首页 学者频道 学术频道 创新频道

高小斯讲数学家的故事——柯西

科界 2018-09-11

本文转载自《高斯数学》微信公众号 20180911010156_417f2a.jpg

柯  西

 简介

柯西(Cauchy,Augustin Louis 1789-1857),出生于巴黎,他的父亲路易·弗朗索瓦·柯西是法国波旁王朝的官员,在法国动荡的政治漩涡中一直担任公职。由于家庭的原因,柯西本人属于拥护波旁王朝的正统派,是一位虔诚的天主教徒。并且在数学领域,有很高的建树和造诣。很多数学的定理和公式也都以他的名字来称呼,如柯西不等式、柯西积分公式

20180911010156_42d6cf.jpg

 人物生平

柯西1789年8月21日出生于巴黎。父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日与拉普拉斯交往密切。柯西少年时代的数学才华颇受这两位数学家的赞赏,并预言柯西日后必成大器。拉格朗日向其父建议“赶快给柯西一种坚实的文学教育”,以便他的爱好不致把他引入歧途。父亲因此加强了对柯西的文学教养,使他在诗歌方面也表现出很高的才华。

20180911010156_460230.jpg

数学家拉格朗日

1807年至1810年柯西在工学院学习,曾当过交通道路工程师。由于身体欠佳,接受了拉格朗日和拉普拉斯的劝告,放弃工程师而致力于纯数学的研究。柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献

1821年柯西提出极限定义的方法,把极限过程用不等式来刻画,后经魏尔斯特拉斯改进,成为现在所说的柯西极限定义。当今所有微积分的教科书都还(至少是在本质上)沿用着柯西等人关于极限、连续、导数、收敛等概念的定义。他对微积分的解释被后人普遍采用柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”。在定积分运算之前,强调必须确立积分的存在性。他利用中值定理首先严格证明了微积分基本定理。通过柯西以及后来魏尔斯特拉斯的艰苦工作,使数学分析的基本概念得到严格的论述。从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念、运动和直观了解的完全依赖中解放出来,并使微积分发展成现代数学最基础最庞大的数学学科

20180911010156_479276.jpg

极限定义

数学分析严谨化的工作一开始就产生了很大的影响。在一次学术会议上柯西提出了级数收敛性理论。会后,拉普拉斯急忙赶回家中,根据柯西的严谨判别法,逐一检查其巨著《天体力学》中所用到的级数是否都收敛。

柯西在其它方面的研究成果也很丰富。复变函数的微积分理论就是由他创立的。在代数方面、理论物理、光学、弹性理论方面,也有突出贡献。柯西的数学成就不仅辉煌,而且数量惊人。柯西全集有27卷,其论著有800多篇,在数学史上是仅次于欧拉的多产数学家。他的光辉名字与许多定理、准则一起铭记在当今许多教材中。

作为一位学者,他思路敏捷,功绩卓著。从柯西卷帙浩大的论著和成果,人们不难想象他一生是怎样孜孜不倦地勤奋工作。但柯西却是个具有复杂性格的人。他是忠诚的保王党人,热心的天主教徒,落落寡合的学者。尤其作为久负盛名的科学泰斗,他常常忽视青年学者的创造。例如,由于柯西“失落”了才华出众的年轻数学家阿贝尔与伽罗华的开创性的论文手稿,造成群论晚问世约半个世纪。

1857年5月23日柯西在巴黎病逝。他临终的一句名言“人总是要死的,但是,他们的业绩永存。”长久地叩击着一代又一代学子的心扉。

柯西在纯数学和应用数学的功力是相当深厚的,在数学写作上,他是被认为在数量上仅次于欧拉的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说,法国科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能有四页,所以,柯西较长的论文只得投稿到其它地方。

柯西在幼年时,他的父亲常带领他到法国参议院内的办公室,并且在那里指导他进行学习,因此他有机会遇到参议员拉普拉斯和拉格朗日两位大数学家。他们对他的才能十分赏识;拉格朗日认为他将来必定会成为大数学家,但建议他的父亲在他学好文科前不要学数学。

 个人轶事

绰号

柯西在学生时代,有个绰号叫『苦瓜』,因为他平常像一颗苦瓜一样,静静地不说话,如果说了什么,也很简短,令人摸不着头绪,和这种人沟通,是很痛苦的。柯西的身边没有朋友,只有一群妒嫉他聪明的人。当时法国正在流行社会哲学,柯西工作之余常看的书,却是拉格朗日(Joseph Louis Lagrance,1736-1813)的数学书,与灵修书籍《效法基督》,这使他赢得另一个外号『脑筋劈哩啪啦叫的人』,意即神经病。

柯西的母亲听到了传言,就写信问他实情。柯西回信道:『如果基督徒会变成精神病人,那疯人院早就被哲学家充满了。亲爱的母亲,您的孩子像原野上的风车,数学和信仰就是他的双翼一样,当风吹来的时候,风车就会平衡地旋转,产生帮助别人的动力。

1816年,柯西回到巴黎,担任母校的数学教授,柯西自己写道:『我像是找到自己河道的鲑鱼一般地兴奋。』不久他就结婚,幸福的婚姻生活,有助于他与别人沟通的能力。

20180911010156_48bb35.jpg

柯西

出名

数学大师伯努利曾说过:『只有数学能够探讨「无穷」,而「无穷」正是上帝的属性之一』。物理、化学、生物都是有限之内的学科,『无穷』才能代表永远测不透的极限。『无穷』的观念令哲学家疯征、让神学家叹息,使许多人深感惧怕。柯西却把『无穷』应用来厘定更精确的数学含义,他把数学的微分看或是『无穷小时的变化』,把积分表示为『无穷多个无穷小之和』。柯西用无穷重新定义微积分,至今仍为每一本微积分课本的开宗明义篇。

1821年,柯西的名声远播。远自柏林、马德里、圣彼得堡的学生,都来到他的教室里上课,他又发表非常有名的『特征值』理论,同时写道:『在纯数学的领域里,似乎没有实际的物理现象来印证,也没有自然界的事物可说明,但那是数学家遥遥望见的应许之地。理论数学家不是一个发现者,而是这个应许之地的报导者』。

20180911010156_4a4766.jpg

绿线是标准柯西分布概率密度函数

晚年

四十岁后的柯西不愿对新政府效忠,他认为学术应有不受政治影响的自由。他放弃工作与祖国,带着妻子到瑞士、意大利旅行教书,各地大学都很欢迎他。但是他写道:『对数学的兴奋,是身体无法长期的负荷,累!』柯西四十岁后,下课后就不再做研究工作了。

他身体逐渐衰弱,一八三八年他再回巴黎大学教书,但为政治效忠问题再度离开。因着他的坚持,一八四八年法国通过大学教授的学术自由,是以个人的良心为底限,不在政治限制之内。从此世界各大学纷纷跟进这个制度,大学成为学术自由的地方。

20180911010156_4b8b12.jpg

柯西人教巴黎大学

巴黎纸贵

传说柯西年轻的时候向巴黎科学院学报投论文,非常之快,非常之多使得印刷厂为了印制这些论文抢购了巴黎市所有纸店的存货,使得市面上纸张短缺,纸价大增,印刷厂成本上升,于是科学院通过决议,以后发表论文每篇篇幅不得超过4页。柯西不少长篇论文不得在本国发表,只能改投别国刊物。

人物成就

柯西是一位著名的多产数学家,他的全集从1882年开始出版到1974年才出齐最后一卷,总计28卷。他的主要贡献如下;

单复变函数

柯西最重要和最有首创性的工作是关于单复变函数论的。18世纪的数学家们采用过上、下限是虚数的定积分。但没有给出明确的定义。柯西首先阐明了有关概念,并且用这种积分来研究多种多样的问题,如实定积分的计算,级数与无穷乘积的展开,用含参变量的积分表示微分方程的解等等。

分析基础

柯西在综合工科学校所授分析课程及有关教材给数学界造成了极大的影响。自从牛顿和莱布尼茨发明微积分(即无穷小分析,简称分析)以来,这门学科的理论基础是模糊的。为了进一步发展,必须建立严格的理论。柯西为此首先成功地建立了极限论。

极限论的功能

设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ时,对应的函数值f(x)都满足不等式:

|f(x)-A|<ε

那么常数A就叫做函数f(x)当x→x。时的极限。

常微分方程

柯西在分析方面最深刻的贡献在常微分方程领域。他首先证明了方程解的存在和唯一性。在他以前,没有人提出过这种问题。通常认为是柯西提出的三种主要方法,即柯西-利普希茨法,逐渐逼近法和强级数法,实际上以前也散见到用于解的近似计算和估计。柯西的最大贡献就是看到通过计算强级数,可以证明逼近步骤收敛,其极限就是方程的所求解。

弹性力学数学理论

柯西是在力学方面是弹性力学数学理论的奠基人。他在1823年的《弹性体及流体(弹性或非弹性)平衡和运动的研究》一文中,提出(各向同性的)弹性体平衡和运动的一般方程(后来他还把这方程推广到各向异性的情况),给出应力和应变的严格定义,提出它们可分别用六个分量表示。这论文对于流体运动方程同样有意义,它比C.-L.-M.-H.纳维于1821年得到的结果晚,但采用的是连续统的模型,结果也比纳维所得的更普遍。1828年他在此基础上提出的流体方程只比现在通用的纳维-斯托克斯方程(1848)少一个静压力项。

20180911010157_50283b.jpg

本文转载自《高斯数学》微信公众号

十大热门文章

物理学咬文嚼字之一百:万物皆旋(上)

2. X射线自由电子激光单颗粒成像研究

3. X射线自由电子激光

4. 超导“小时代”之三十四:铁器新时代

5. 二胡音色的定量分析和一种改进方案

6. 云量子计算求解原子核问题

7. 周末大家谈——我和物理所

8. 忆阻器研究新进展:基于二维材料的可耐受超高温忆阻器

9. 寂静春天里的动力学(上)

10. 一种充满惊喜的二维材料

END

20180911010157_51c0b0.jpg

数学 数学家 100% 函数 定义 柯西 微积分 极限 积分 无穷

推荐资讯