材料科普:材料信息学 - 解码材料基因图谱丨科普硅立方

科技工作者之家 2020-10-28

来源:今日新材料

被戏称为诺贝尔“理综奖”的化学奖今年再度授予给生物学家,以表彰她们对新一代基因编辑技术的贡献。同样是由微观粒子(原子、分子、离子等)构成的材料,是否也存在决定材料性能的“基因”呢?

答案是肯定的,而且已经引起各国的重视。早在2011年,美国联邦政府率先启动了一项名为“材料基因组计划”(Materials Genome Initiative, MGI)的研究计划,通过先进实验和计算技术和数据共享等方式,加速新材料的发现,缩短材料研发周期,同时降低成本。同年年底,中国科学院和中国工程院召开了香山科学会议研讨“材料科学系统工程”,并由徐匡迪院士等学者提出启动中国的“材料基因组计划”。

在了解材料信息学之前,我们首先需要对材料科学研究四大范式的发展脉络有整体的认识。四大范式包括,实验试错、理论推演、模拟计算和数据科学。

材料信息学一改以往研究范式对经验和理论模型的依赖,直接针对可能与目标量相关的数据,分析其中统计关联性,再从中研究材料成分、结构、工艺和性能之间的物理内涵。这种由数据驱动的方法借助如今快速发展的大数据和人工智能方法,从大量、复杂的变量集合中提取决定性因素,构建数据之间的定量关系,指导新规律的发现和新材料的快速研发。

机器学习是实现人工智能的一类方法,其基本过程是采用程序算法利用大量的数据进行建模训练,从数据中学习规律,最终对未知事物做出决策和预测。机器学习方法研究材料科学一般分为数据集构造、数据预处理、数据降维、模型训练、模型测试与评价等步骤。在材料科学领域,获取一个数据可能意味着几个小时的模拟计算,几天的材料制备,几周的循环测试……因此,材料学的数据很难成为“大数据”,至少现阶段只能是“小数据”。正是由于数据量小,数据偏差和噪声对模型的影响将会十分显著。机器学习的算法再优化,计算机的算力再提升,我们手里只有稀疏、高维、有偏差和带噪音的数据,材料信息学将面临“巧妇难为无米之炊”的困境。

破解“数据困境”需要从两个方面着手:生产和流通。在数据生产方面,随着各国有关材料基因工程的项目推进,高通量实验和计算快速发展,对数据的标准化和高效产出有非常积极的作用。

我们不妨畅想未来的材料实验室成为“数据工厂”的那天:智能化的实验机器人,严格标准化的样品制备和测试表征,完全电子化的实验记录,融合物联网的内部即时数据共享平台,融合区块链技术的国际数据交易平台,以及更加先进的处理和分析数据的人工智能方法。我们材料人将会从“磨金相、守炉子、过柱子”,甚至复杂的数据分析之中解放出来,转型为“开发者”、“合作者”和“研究者”。“开发者”负责AI算法和智能化实验机器的开发与维护;“合作者”熟悉编程和材料研究的两套逻辑和语言,促进“开发者”和“研究者”的沟通交流;“研究者”捕捉行业痛点,提出科学问题,创新研究思路。到那一天,或许我们能够解码出材料基因图谱,每一位材料人都能像钢铁侠一样帅气地研发材料。


参考文献:

1. Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science[J]. APL Materials, 2016, 4(5):053208-1-10.

2. Liu Y, Zhao T, Ju W, et al. Materials discovery and design using machine learning[J]. Journal of Materiomics, 2017, 3(3).

3. Dima A, Bhaskarla S , Becker C , et al. Informatics Infrastructure for the Materials Genome Initiative[J]. JOM - Journal of the Minerals, Metals and Materials Society, 2016, 68(8):2053-2064.

4. Anubhav J, Shyue P O, Geoffroy H, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1:011002-1-11

5. Hanoch S, Alexander T. Materials Informatics. Journal of Chemical Information and Modeling 2018 58 (7), 1313-1314

6. 施思齐,徐积维,崔艳华 等. 多尺度材料计算方法[J]. 科技导报, 2015, 33(10):20-30


原文链接:

https://www.toutiao.com/i6888097952829538824/?tt_from=weixin&utm_campaign=client_share&wxshare_count=1&timestamp=1603789453&app=news_article&utm_source=weixin&utm_medium=toutiao_ios&use_new_style=1&req_id=202010271704130101290371371844B9D6&group_id=6888097952829538824



来源:gh_d06fa4463e84 今日新材料

原文链接:http://mp.weixin.qq.com/s?__biz=MzkwMTEzMjE5OQ==&mid=2247485628&idx=8&sn=083ed3f847c9c41478bb26f2db056c3d&chksm=c0b83274f7cfbb62ffa52e1b570f18ca59d6e362691eb696ce1abfa284828f2a04e62b26963a&scene=27#wechat_redirect

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

信息学

推荐资讯