复旦大学材料科学系梅永丰教授课题组在功能薄膜三维卷曲构造方面取得进展

科技工作者之家 2019-11-14

来源:两江科技评论

随着纳米技术的发展,研究者们逐渐将目光从传统的平面二维微纳结构转向立体的三维微纳结构。由各种材料构筑而成的三维微纳结构拥有更高的集成密度和平面结构无法实现的复杂功能。复旦大学梅永丰教授课题组与中科院上海微系统所狄增峰研究员课题组和东南大学邱腾教授课题组合作,提出了一种基于微液滴嵌入的纳米薄膜剥离技术,实现了对纳米薄膜卷曲行为的精确控制和卷曲三维微纳结构的大规模制备。这一方法为三维微纳结构提供了一种简便、低成本、普适、可控的制备方案。相关研究成果以“Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami”为题发表在《自然》子刊《自然通讯》(Nature Communications)上发表,论文主要由胥博瑞博士,张馨缘本科生和田子傲副研究员合作完成,韩迪博士对该工作有重要贡献。

20191114202238_e8c375.jpg

20191114202238_ea169b.jpg

利用这一方法制备卷曲三维微纳结构的过程十分简单。仅需将一滴液体滴加在图形化沉积的多层纳米薄膜样品上,纳米薄膜便会在接触到液体的瞬间从基底剥离卷曲形成各种三维结构。而液体在样品表面的流动扩散会不断剥离每一个接触到的纳米薄膜,完成规模化的制备过程。通过不同的基底材料设计,这一方法成功应用于各种金属及氧化物体系的三维微纳结构的制备。为了实现对纳米薄膜卷曲行为的精确控制,研究团队利用与微操作系统相连接的毛细管控制样品表面的微液滴运动以精确设定液体与纳米薄膜的接触剥离点,使纳米薄膜摆脱了图形和材料的限制能够沿着任意方向进行卷曲。结合纳米薄膜的图案设计,完成了各种复杂三维结构的设计和制备。研究团队充分利用了这一新颖的制备方式构筑不同材料的三维微纳结构,展示了其在气体传感、光学谐振腔、微纳马达及机器领域的应用潜力

20191114202238_eb5ca8.jpg

文献链接:https://www.nature.com/articles/s41467-019-13011-w

来源:imeta-center 两江科技评论

原文链接:http://mp.weixin.qq.com/s?__biz=MzU0NDgwMjI0MQ==&mid=2247489392&idx=2&sn=841fe3844bbe6028bdeade941157c304&chksm=fb77c3decc004ac8596a38dcf6769c0b08646a65bf19e866a474bcb1dcac7c905edf3ab8cb2f&scene=27#wechat_redirect

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

材料 纳米 结构 制备 微纳

推荐资讯