科研论文

返回至主页
  • Substitutional Carbon-Modified Anatase TiO2 Decahedral Plates Directly Derived from Titanium Oxalate Crystals via Topotactic Transition

    • 摘要:

      Changing the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon-doped anatase TiO from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere. Because of the carbon concentration gradient introduced in side of the plates, the carbon-doped TiO (TiO C) shows an increased visible light absorption and a two orders of magnitude higher electrical conductivity than pure TiO. Consequently, it can be used as a photocatalyst and an active material for lithium storage and shows much superior activity in generating hydroxyl radicals under visible light and greatly increased electrical-specific capacity at high charge–discharge rates. The strategy developed could also be applicable to the atomic-scale modification of other metal oxides.

    • 作者:

      Ping Niu    Wu Ting-Ting    Wen Lei    Tan Jun    Yang Yongqiang    Shijian Zheng    Liang Yan    Li Feng    Irvine John T.S.    刘刚    Xiuliang Ma    成会明    

    • 刊名:

      Advanced Materials

    • 在线出版时间:

      2018