科研论文

返回至主页
  • Semiconductor nanowire solar cells: Synthetic advances and tunable properties

    • 摘要:

      The solar power received by Earth far exceeds global power demands. Despite this, infrastructure shortages and high capital costs prevent the wide-scale adoption of photovoltaics to displace conventional energy technologies relying on carbon-based fuels. In response, new concepts and materials have been explored to develop next-generation solar cells capable of operating more efficiently and cheaply. Over the past decade, single semiconductor nanowire (NW) and NW array devices have emerged as promising platforms with which to examine new concepts. Small distances in NWs allow for efficient charge separation while tunable photonic modes permit light absorption properties distinct from bulk materials. Furthermore, the synthesis and fabrication of NW devices presents new opportunities such as with incorporation of complex heterostructures or use of cheaper substrates. Here, we present a critical discussion of the benefits and remaining challenges related to utilization of NWs for solar energy conversion and emphasize the synthetic advances leading towards significant improvement in the electrical and optical performance of NW devices. We conclude by articulating the unique capabilities of solar cells assembled from multiple, distinct NWs. © 2014 IUPAC and De Gruyter Berlin Boston.

    • 作者:

      Thomas Kempa    Charles Lieber    

    • 刊名:

      Pure and Applied Chemistry

    • 在线出版时间:

      2014