华中农业大学Tsuda课题组在植物中建立了病原细菌基因调控网络

科技工作者之家 2020-06-15

来源:BioArt植物

6月15日,Nature Plants在线发表了华中农业大学农业微生物学国家重点实验室/植物科学技术学院、马普植物分子育种研究所独立PI Kenichi Tsuda 教授团队题为Multidimensional gene regulatory landscape of a bacterial pathogen in plants的研究论文。该研究利用植物体内原位细菌转录组及蛋白质组学技术,建立了病原细菌基因调控网络,报道了被寄主免疫系统攻击的病原细菌主要调控途径,并发现了植物免疫系统能够靶标病原菌的三型分泌系统元件,进而抑制病原细菌生长。

wt_a32302020617002851_3697c4.jpg
细菌致病因子的表达和植物免疫成分的变化形成了植物与微生物相互作用过程中的复杂关系。深入研究对这种复杂的互作过程,全面理解细菌如何引起植物病害以及植物如何保护自己免受病原菌侵染至关重要。但由于两个主要瓶颈的存在,限制了人们对病原菌如何应答植物免疫反应的探究。其一是如何从植物宿主细胞内部成功分离出含量极低的细菌RNA。为了克服这一障碍,论文第一作者Tatsuya Nobori博士和王一鸣教授及其同事利用实验室先前建立的病原菌分离方法从植物叶片中富集细菌RNA。第二,细菌mRNA的水平变化通常不能反映实际的蛋白质表达水平。因此,作者通过同时分析细菌mRNA 和蛋白质的表达来解决这一问题。
为了研究感染期间细菌基因的表达模式,作者选取了模式细菌丁香假单胞菌Pseudomonas syringae和拟南芥作为研究材料。通过对丁香假单胞菌的mRNA及蛋白质的分析,作者发现病原菌在宿主侵染过程中的RNA及蛋白表达与体外培养相比,存在较大差异,尤其是在植物与病原菌互作早期,说明这些早期基因表达模式的变化对侵染植物过程至关重要。同时,为了解植物免疫对细菌基因表达的影响,作者选取了与植物免疫过程相关的拟南芥突变植株。细菌转录及蛋白在不同突变体植株中变化的分析表明,受水杨酸 (salicylic acid, SA) 调控的植物免疫参与了对细菌致病相关mRNA和蛋白质的抑制过程。
通过对细菌转录组与蛋白组数据的比较,作者发现SA介导的植物免疫对细菌基因和蛋白质表达的抑制具有高度的一致性。值得一提的是,SA介导的植物免疫能够特异地抑制介导病原菌毒性蛋白进入宿主体内的三型分泌系统尖端组分蛋白的累积。同时,SA途径也能够影响病原菌的趋化性(chemotaxis),但抑制仅发生在蛋白水平,而mRNA水平并无明显变化。
Tsuda教授及其团队获得的大量多组学数据使得他们能够进一步分析病原菌侵入过程中每个细菌基因的表达及调控方式。通过对4765个基因的表达进行相互关联及聚类分析,研究人员鉴定出许多功能未知的基因簇能够参与细菌生长过程;同时,也帮助作者成功预测出先前未知的转录调控因子,并进一步验证了这些转录因子确实参与了相关基因的表达调控和与病原菌的致病性。
wt_a32302020617002851_3a4bda.jpg
该研究对分析植物与病原细菌互作的过程中,细菌遗传信息如何转化为功能蛋白提供了证据,为深入了解植物免疫抑制病原菌侵染的分子机制奠定了基础。该研究方法还可潜在地用于研究包括作物在内的不同植物种类和其他病原菌与共生菌的互作,为优化作物抗病分子育种提供解决方案。

来源:bioartplants BioArt植物

原文链接:http://mp.weixin.qq.com/s?__biz=MzU3ODY3MDM0NA==&mid=2247496051&idx=2&sn=85dd27abdb2efda4499fa595a08ab547&chksm=fd736b14ca04e2029981b8ae11a1d51b709622a46613ad5b8e6b6accb2e7aa64bfbdd245e7e9&scene=27#wechat_redirect

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

细菌 植物 调控

推荐资讯