科学家在二维层状材料及异质结的新奇物性研究中取得进展

科技工作者之家 2020-11-16

来源:中国高科技

随着科技的发展,传统电子元器件在不断微型化过程中面临挑战;寻找新材料、新结构和新原理器件是推动信息化器件进一步发展的关键。近年来,二维材料由于仅有单个或几个原子层厚度,量子效应凸显,呈现出区别于传统三维材料的新奇物性和卓越性能,有望成为新原理型光、电、磁等器件的核心材料。因此,探索具有优异性能的新型二维功能材料、研究其新奇物性并构筑基于二维材料的新原理器件,对二维材料的实际应用具有重要意义。近期,中国科学院科学家团队——物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室N11组副研究员潘金波、博士张艳芳、研究员杜世萱与天普大学教授严琪闽等合作,在二维层状材料及异质结的新奇物性研究中取得进展。研究人员设计了正方形晶格结构在应力下的演化模型,通过分析二维平面结构和起伏结构在应力下可能的演化过程,提出了一个能够使材料产生负泊松比的机制,即材料具有起伏结构,且次近邻原子间相互作用较弱(图1)。结合大数据挖掘和高通量计算,研究人员从二维材料数据库中搜索到一个具有类似模型结构的二维材料家族,即具有p4mm二维空间群的过渡金属硫族和卤族化合物MX,其中,M为V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ag,X为Se,Cl,Br,I(图2)。理论计算表明,当金属原子3d轨道满占据时,体系具有较弱的次近邻相互作用,导致负泊松比的发生,与模型预测结果一致。该研究采用结构模型演化分析结合大数据材料挖掘的方式,提高了二维负泊松比材料的探索效率,为研究具有优异力学性质的二维材料提供参考,相关研究成果发表在npj Computational Materials 6,154(2020)上。此外,研究人员还提出了通过构筑二维磁性范德华异质结来实现量子反常霍尔(QAH)效应的方法,以打破传统本征磁性拓扑绝缘体数量稀少的限制。通过寻找两个具有特定能带带边结构的二维(通常是拓扑平庸的)磁性半导体化合物的组合,使其形成具有拓扑非平庸能带结构的III型异质结(图3)。结合基于对称性分析的理论模型、大数据挖掘和高通量计算方法,研究人员预测了8种具有QAH效应的异质结候选材料,该异质结材料由MXY化合物(M=金属原子,X=S,Se,Te,Y=F,Cl,Br,I)中二维铁磁半导体材料构成。以MnNF/MnNCl为例,理论上直接计算了该异质结的电子结构(图4)和拓扑不变量(陈数)及手性边缘态(图5),计算结果表明,MnNF和MnNCl在FM-stacking方式下能够产生QAH效应,这与基于对称性分析的理论模型结果一致。该研究展示了如何将数据驱动的材料科学与基于对称性分析的理论模型相结合,寻找具有QAH效应和其他奇异量子态的新型异质结量子材料,相关研究成果发表在npj Computational Materials 6,152(2020)上。图1.二维平面和起伏结构在单轴应力下结构演化示意图图2.(a)具有p4mm二维空间群的MX材料家族的几何结构;(b)泊松比与其它结构参数图3.数据驱动二维磁性拓扑异质结探索流程图4.基于密度泛函理论的单层MnNF、MnNCl和MnNF/MnNCl异质结的电子结构图5.基于Tight-binding模型的MnNF/MnNCl异质结在FM-stacking and AFM-stacking下能带结构wt_a72362020111164742_e731ce.jpg
wt_a12302201116164742_ee4ca5.jpg
wt_a22322001116164743_f94854.jpg
wt_a12302201116164744_0355b3.jpg
wt_a42312020116164744_09cdb1.jpg

来源:cas-hitech 中国高科技

原文链接:http://mp.weixin.qq.com/s?__biz=MzA3MDczMTAzMA==&mid=2650052118&idx=2&sn=6f957e9af46a3b768617bb9a5c2e7787

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

二维材料 异质结 拓扑

推荐资讯