GPRS核心网

科技工作者之家 2020-11-17

GPRS核心网(英语:GPRS Core Network)是GPRS(通用分组无线业务,英语:General Packet Radio Service)的中心部件,它允许2G、3G以及WCDMA移动网络将IP数据包传送至外部网络,例如因特网。GPRS系统是集成于GSM网络交换子系统的一部分。

一般支撑功能GPRS核心网提供在GSM和WCDMA网络中的移动性管理、会话管理,以及IP数据包的传输业务。该核心网同时支持包括计费和合法监听等其他附加功能。GPRS核心网曾一度被建议要在美国的D-AMPS TDMA系统中支持分组无线业务,但事实上,所有这些网络都已经被替换为GSM,因此该选项已经不重要了。

PRS模块是一个开放标准驱动的系统。它的标准化主体是3GPP。1

GPRS隧道协议(GTP)主条目:GPRS隧道协议

GPRS隧道协议(GPRS Tunnelling Protocol,简称GTP)是GPRS核心网目前定义的基于IP的协议。大体上说,这个协议允许GSM或WCDMA网络的最终用户可以随处移动,而同时持续地连接到因特网,如同只是从GGSN的同一个位置进行的。2

它通过承载从当前正在为签约用户(subscriber)提供服务的SGSN到当前正在处理该签约用户的会话的GGSN的签约用户数据来实现。GPRS核心网使用三种形式的GTP。

GTP-U

用于在多个独立的隧道中为每个PDP上下文(Packet Data Protocol context)传输用户数据。

GTP-C

用于控制目的,包括:

PDP上下文的建立和删除

GSN可及性(reachability)的验证

更新;例如,当一个签约用户从一个SGSN移动到另一个的时候

GTP'

用于从各个GSN向计费功能(charging function)传输计费数据。

GGSN和SGSN(合称“GSNs”)在UDP端口2123上监听GTP-C消息,而在端口2152上监听GTP-U消息。这个通信直接在一个单独的网络中进行,或者在国际漫游的有情况下,通过一个GRX(GPRS漫游交换,英文:GPRS Roaming Exchange)进行。

计费网关功能(Charging Gateway Function)在TCP或UDP端口3386上监听发送自各个GSN的GTP'消息。核心网向CGF发送的计费信息,通常包含PDP上下文激活次数和最终用户所传输的数据的质量。然而,GTP'通信仅发生在同一个运营商网络内部,并没有充分的标准化,根据供应商和配置选项的不同,可能使用私有的编码甚至完全私有的系统。

GTP版本0支持在同一个消息头下面同时包含信令(signalling)和用户数据(user data)。它可以在已注册的3386端口上同时和UDP或TCP一起使用。GTP版本1仅在UDP上使用。控制平面协议(Control Plane Protocol)GTP-C(Control)使用已注册的2123端口,而用户平面协议(User Plane Protocol)GTP-U(User)使用已注册的2152端口。

GPRS支撑节点(GSN)一个GSN是一个网络节点,它支持在GSM核心网中对GPRS的使用。所有的GSN都应当拥有一个Gn接口,并支持GPRS隧道协议。GSN有两个关键的变种,即网关(gateway)和业务(service)GPRS支撑节点。

网关GPRS支撑节点(GGSN)网关GPRS支撑节点(Gateway GPRS Support Node,简称GGSN)是GPRS网络的一个主要组件。GGSN负责GPRS网络和因特网或X.25网络等外部包交换网络之间的互联。

从外部网络的角度来看,GGSN是一个到某个“子网”(sub-network)的路由器(router),因为GGSN对外部网络“隐藏”了GPRS基础设施(infrastructure)。当GGSN收到一个目的地址为某个特定用户的数据后,它检查该用户是否仍处活跃状态(active)。如果是的,则GGSN将该数据转发到当前正在为该移动用户提供服务的SGSN;如果该移动用户不处于活跃状态,则该数据被丢弃。换句话说,面向移动(mobile-originated)的数据包被GGSN路由到正确的网络。

GGSN是一个锚点(anchor point),它使得在GPRS/UMTS网络中的用户终端具有可移动性(mobility)。在GPRS中,它扮演与移动IP中的归属代理(home agent)相同的角色。它维持与当前正在为一个特定MS(移动台,英文:Mobile Station)提供服务的SGSN之间进行协议数据单元(Protocol Data Units,简称PDU)隧道连接所必须的路由。

GGSN将来自SGSN的GPRS数据包转换成合适的的包数据协议(Packet Data Protocol,简称PDP)格式(例如,IP或X.25),在相应的的包数据网络中将它们发送出去。在另一个方向上,传入的数据包的PDP地址被转换为目标用户的GSM地址。被更改地址后的数据包被发送给相应负责的SGSN。为了这个目的,GGSN会在它的的本地寄存器中存储用户当前的SGSN地址以及他/她的用户概要。GGSN要负责IP地址的分配,并且是已连接的用户设备(User Equipment,简称:UE)的默认路由器。GGSN还履行鉴权(authentication)和计费(charging)的功能。

其它功能还包括签约用户屏蔽(Subscriber Screening)、IP池管理,以及地址映射、QoS和PDP上下文执行。

在LTE场景中,GGSN功能被移到SAE网关(而SGSN功能则工作在MME中)。

业务GPRS支撑节点(SGSN)一个业务GPRS支撑节点(Serving GPRS Support Node,简称:SGSN)负责在它的地理位置服务区域内从移动台接收或向其发送数据包。它的任务包括数据包路由和传输、可移动性管理(mobility management,附着/分离和位置管理)、逻辑链路管理(logical link management)以及鉴权和计费功能。SGSN的位置寄存器存储所有在它上面注册的GPRS用户的位置信息(例如,当前蜂窝、当前VLR)和用户概要(例如IMSI、包数据网络中所使用的地址)。

SGSN公共功能[编辑]

将来自GGSN的GTP包(下行)去隧道化(detunnel)

将去往GGSN的IP包(上行)隧道化(tunnel)

当待机(Standby)模式的移动电话从一个路由区域移动到另一个路由区域时,实现可移动性管理(mobility management)

对用户数据进行计费

SGSN在GSM/EDGE中的特有功能[编辑]

EDGE(Enhanced Data Rates for GSM Evolution)所指定的SGSN功能和特征包括:

每签约用户大约60 Kbps(对于EDGE来说约150 Kpbs)的最大数据速率

使用Gb协议栈,通过帧中继或IP连接到数据包控制单元(Packet Control Unit)

接受上行数据来形成IP数据包

加密下行数据,解密上行数据

为处于已连接(connected)模式的移动电话,实现蜂窝级的可移动性管理

SGSN在WCDMA中的特有功能[编辑]

承载最高约42 Mbps的下行流量和5.8 Mbps的上行流量(HSPA+)

隧道化/去隧道化面向无线网络控制器(RNC)的上行/下行数据包

为处于“已连接”模式的移动电话实现RNC级(level of an RNC)的可移动性管理

接入点主条目:接入点名称

一个“接入点”是:

一个移动机可以连接到的一个IP网络

用于该连接的一系列设置

一个移动电话中的在一系列设置中的一个特定选项

当一个GPRS移动电话建立了一个PDP上下文,则接入点被选择。此时,一个接入点名称(Access Point Name,简称APN)被确定。

举例:aricenttechnologies.mnc012.mcc345.gprs

举例:Internet

举例:mywap

举例:hcl.cisco.ggsn

这个接入点随后被在一个DNS查询中使用,这个查询是针对一个私有DNS网络的。这个处理过程(称为APN解析)最终给出应当为该接入点提供服务的GGSN的IP地址。此时,可以激活一个PDP上下文。

PDP上下文包数据协议(Packet Data Protocol,简称PDP,例如:IP、X.25、帧中继)上下文(context)是一个数据结构,在SGSN和GGSN上都会出现。当签约用户拥有一个活跃的会话时,它会包含该签约用户的会话信息。当一个移动电话想要使用GPRS的时候,它必须首先附着(attach)并随后激活一个PDP上下文。这会在签约用户当前正在拜访的SGSN中,以及正在为该签约用户的接入点提供服务的GGSN中分配一个PDP上下文数据结构。该数据记录包括:

签约用户的IP地址

签约用户的IMSI

签约用户的

在GGSN上的隧道端点ID(TEID)

在SGSN上的隧道端点ID (TEID)

隧道端点IP是一个由GSN分配的号码,它标识关联到一个特定的PDP上下文的已隧道化的数据(tunnelled data)。

若干个PDP上下文可能使用相同的IP地址。次级PDP上下文激活(Secondary PDP Context Activation)过程可能被用于在重用来自一个已经激活但具有不同的QoS概要的PDP上下文的PDP地址或其它PDP上下文信息时,激活一个PDP上下文。注意,该过程被称为“次级”,不会导致与它们所重用的PDP地址没有这种关系的PDP上下文产生。

总共有11个PDP上下文(以任何主次组合)可以共同存在。网络服务接入点标识符(Network Service Access Point Identifier,简称NSAPI)被用于区分不同的PDP上下文。

参见基站子系统

数据包控制单元

网络交换子系统

本词条内容贡献者为:

王慧维 - 副研究员 - 西南大学

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。