单晶X射线衍射

科技工作者之家 2020-11-17

单晶X射线衍射是利用单晶体对 X射线的衍射效应来测定晶体结构的实验方法。依照强度记录方式的不同,可分为照相法和衍射仪法两类。

简介照相法使射线作用在胶片上,然后测量底片上衍射点的黑度来获得衍射线的强度数据,根据实验装置和条件的差别,又分为多种方法。

劳厄照相法用连续波长的 X射线照射到静止不动的单晶体上,通常采用平板底片,所摄得的衍射图称为劳厄图。劳厄图常用来测定晶体的对称性和用于晶体的定向等。

X射线衍射的基本原理1912年,劳厄等人根据理论预见,证实了晶体材料中相距几十到几百皮米(pm)的原子是周期性排列的;这个周期排列的原子结构可以成为X射线衍射的“衍射光栅”;X射线具有波动特性,是波长为几十到几百皮米的电磁波,并具有衍射的能力。这一实验成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。这就是X射线衍射的基本原理1。

回摆照相法实验条件和装置与转动法基本一样,差别在于照相过程中,晶体只在选定的角度范围内来回摆动。这样可以避免同一层线上衍射点的重叠。但要摄取多套回摆图,才能收集完整的衍射数据。回摆照相法若配上计算机,自动测量衍射点强度和指标化,则有相当的优越性。广泛用于蛋白质的结构分析,与四圆衍射仪比较,可节省衍射实验的时间1。

韦森堡照相法同一层线的衍射点是由不同晶面在晶体转动的不同时刻反射得到的,若在晶体转动时,让带动晶体摆动的马达通过涡轮涡杆同时使底片圆筒左右来回摆动,就可将原在同一层线的衍射点分开,这类方法称为运动底片法。韦森堡照相法是运动底片法的一种,其装置如图2所示。晶体的转轴和感光胶片圆筒均水平安放,在晶体与底片之间有一个层线屏,以便将其他层的衍射线遮住,只让某一层线的衍射线射到底片上,这类衍射图如图3所示。

一系列圆锥面上,衍射图展平后如图1b所示,图中衍射点排列成一系列平行的层线。利用转动图中的层线间距可算出晶格参数,若晶体的c轴与转动轴一致。

韦森堡图既可用来确定晶体的微观对称性和晶格参数,又可较方便地进行衍射点的指标化和测量强度,因而在四圆衍射仪被广泛使用之前,它是测定晶体结构的重要方法之一2。

单晶衍射仪法此法用射线计数仪直接记录射线的强度。单晶衍射仪有线性衍射仪、四圆衍射仪和韦森堡衍射仪等,其中以四圆衍射仪(图4),最为通用。所谓四圆是指晶体和计数器藉以调节方位的四个圆,分别称为φ圆、圆、w圆和2θ圆。φ圆是安装晶体的测角头转动的圆;圆是支撑测角头的垂直圆,测角头可在此圆上运动;w圆是使圆绕垂直轴转动的圆,2θ圆与w圆共轴,计数器绕着这个轴转动。这四个圆中,w圆、φ圆和圆用于调节晶体的取向,使某一指定的晶面满足衍射条件,同时调节2θ圆,使衍射线进入计数器中。通常,四圆衍射仪配用电子计算机自动控制和记录,可以精确测定晶格参数,并将衍射点的强度数据依次自动收集,简化了实验过程,而且大大提高了数据的精确度。因此,它已成为当前晶体结构分析中强有力的工具2。

本词条内容贡献者为:

石季英 - 副教授 - 天津大学

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。