变循环航空发动机

科技工作者之家 2020-11-17

变循环发动机是一种多设计点发动机,是指在一台发动机上,通过改变发动机的一些部件的几何形状、尺寸或者位置,来实现不同热力循环的燃气涡轮发动机。变循环发动机目前主要的研究方向是在爬升、加速和超声速飞行时减小涵道比以增大推力,在起飞和亚声速飞行时增大涵道比以降低耗油率和噪声。

定义变循环发动机是一种多设计点发动机,通过改变一些部件的几何形状、尺寸或位置,来调节其热力循环参数(如增压比、涡轮进口温度、空气流量和涵道比),改变发动机循环工作模式(高推力或低油耗)使发动机在各种飞行情况下都能工作在最佳状态。与此同时,变循环发动机能以多种模式(包括涡轮模式、涡轮风扇模式和冲压模式等)工作,因而在亚声速、跨声速、超声速和高超声速飞行状态下都具有良好的性能,在涡喷/涡扇发动机领域,变循环发动机研究的重点是改变涵道比,如发动机在爬升、加速和超声速飞行时涵道比减小,接近涡喷发动机的性能,以增大推力;在起飞和亚声速飞行时,加大涵道比,以涡扇发动机状态工作,降低耗油率和噪声。1

需求与背景在未来陆、海、空、天、电多维力量和多维战场的信息化战争中,配装先进动力系统的航空武器装备是一个重要环节,是夺取制空权和决定战争胜负的决定性因素之一。传统航空涡轮发动机的热力循环特性是固定不变的,一种发动机只能在一种模式下工作,并且仅在有限的飞行范围内具有最好的性能。

航空发动机基本原理都是将燃油的能量转化为发动机的推力,而后在推动飞机前进的过程中使飞机和空气互相作用产生向上的升力将飞机拉起。从发动机出现至今,共有螺旋桨发动机、涡扇发动机、涡轮发动机、冲压发动机四种形态,这四种发动机各有特点,其中涡桨发动机依靠螺旋桨风扇的推力做功推动飞机前进,其飞行效率高,最省油,航程大,但推力却较小。涡喷发动机依靠向喷管外喷射气流做功,可以达到很大的推力,但却非常耗油。

涡扇发动机则是将二者结合起来,设置内外两个涵道,使得一部分推力来自于涡扇,一部分推力来自于喷口,这样就取得一个适中的性能,成就了其在音速边界范围内的机动性。但总的来说,为了应付空战需求,发动机需要推力更大些以完成高机动动作,为了进行更远程的打击,就需要发动机更省油,这两个矛盾的要求一直困扰着科学家。

从飞机的发展来看,因为现代战机的机载设备量急剧攀升,因此重量较以前大大增加,但发动机却只能在推力和航程中取折中,这就导致了现代飞机作战航程甚至比不上二战很多主战飞机。为了弥补这个差距,就需要进行变循环设计,让飞机在能够不同时刻工作在不同的状态。2

发展历程变循环发动机概念的提出可以追溯到20世纪60年代,随着涡轮风扇发动机的问世,它优越的亚音速性能,高的推进效率,使得发动机设计师不断地追求更大涵道比的发动机。在超音速飞行状态,由于大涵道比的涡扇发动机耗油率明显高于等推力级的小涵道比涡扇发动机,因此限制了超音速飞机发动机涵道比的进一步增加,为了使航空发动机在亚音速和超音速状态下都具有较好的性能,国外航空发动机科学家提出了变几何和变循环发动机思想。

变循环发动机的优点就是在宽广的飞行包线内,都能保持很好的效率和较低的耗油率,可以看作将亚音速性能很好的大涵道比涡扇与超音速性能很好的小涵道比涡扇、涡喷取各自优点,结合成一台发动机。实践证明,变循环发动机技术以其内在的性能优势,能够满足强大的军事需求,并显示出巨大的应用发展潜力,已经受到各航空强国的重视、是目前航空动力主流的研究方向。

特别是在先进战斗机研究方面,自20世纪60年代以来,战斗机一方面朝着多用途方向发展;另一方面,飞机的飞行包线不断扩大,特别是在20世纪80年代后,人们更加重视飞机机体/推进系统一体化设计,由于变循环发动机在满足上述指标方面的优势尤为明显,于是,对军用战斗机的变循环发动机研究逐步开展起来。国外最早的变循环发动机是美国20世纪60年代初在SR-71“黑鸟”上使用的J58发动机,该发动机可在涡喷发动机模式和冲压发动机模式之间转换。

迄今,变循环发动机技术已有50年的探索研究与发展历程。国外各大航空发动机公司,如英国的罗·罗公司,法国的SNECMA公司、日本的工业科学与技术研究所和美国的GE公司等,均在不断地进行变循环发动机概念设计和方案设计研究,并进行试验验证。1

原理飞机发动机技术提升的核心在于——如何提高燃油使用效率。喷气式飞机原理是将空气吸入发动机后和燃油混合加热,而后高温高压气体向后喷出,按照牛顿第三定律,飞机就可以获得一个反推力。但这个高温高压气体本身就拥有很大的能量,也就是说,这些能量被白白浪费掉了,但有时候为了机动性则不得不这样做,以往的飞机,往往是涡喷就只能是涡喷模式工作,是涡扇就只能涡扇模式工作。而在飞机航行的整个过程中,往往有很多路程是不需要使用这种高油耗率的工作方式的。而在靠近战场时,为了接敌,则需要高速机动,为了机动空战则需要跨音速飞行模式。于是变循环发动机就是把这三种模式结合起来,合理规划,达到了最佳的使用效果。

发动机一般从前往后结构以此为进气道——压气机——燃烧室——涡轮——喷口。对应的过程是空气吸入——空气压缩增压——空气混合燃烧——带动涡轮旋转——尾部喷出做功。变循环发动机则采用涡轮风扇体制,将气流分在三个涵道,但这三个涵道可以变换大小口径,通过组合搭配成就最佳的工作模式,在需要经济巡航时,2个调节板向下调节,挡住通过燃烧室的气流,使发动机工作在螺旋桨模式,当需要进行跨音速机动时,调节板1向下,而向上,组成一个涡扇发动机。当要进行超音速巡航时,调节板1、2均向上偏,使其成为一台涡喷发动机。假如发动机使用了任务规划体制,还可以根据不同的任务使用电脑规划发动机的作用方式达到最佳作战效能。

这个措施看起来简单,但在工程上实现起来是十分难的,发动机工作在高温高压和极高转速的情况下,最好不要有任何的结构变换,否则会带来发动机部件的损伤导致发动机出现安全问题,挡板的偏移也会带来气流的瞬时畸变,导致发动机工作不稳定甚至停车。根据研制该技术的GE公司官网宣传资料,使用这一技术后,在同等燃油的情况下飞机的滞空时间可以提高50%,航程增加33%,减少25%的燃油消耗率,达到60%的燃油热吸收率。2

变循环发动机的关键技术变循环发动机技术是一项综合性较强的技术,与传统涡扇发动机相比技术跨度很大,主要表现为调节参数增加,控制规律更加复杂,对发动机可靠性、维修性也带来了挑战。由于增加了核心机驱动风扇,传力路径和整机布局也与传统发动机有很大不同,同时,对变循环的热力循环机理本身尚存在认识上的欠缺,因此,要使变循环发动机成为现实,需突破总体性能、总体结构、控制系统和机构等一系列关键技术,如变循环发动机性能仿真、核心机驱功的风扇级CDFS设计、高效可控涡轮导向器、面积可调涵道导向器、低污染燃烧室、离性能低污染外涵加力燃烧室、反速度场同心环喷管、自适应控制技术、单级高负荷跨音速高压涡轮和双级无导叶对转低压涡轮等。1

本词条内容贡献者为:

任毅如 - 副教授 - 湖南大学

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。