弦唯象学

科技工作者之家 2020-11-17

弦唯象学(英语:String phenomenology)是理论物理学的一个分支,试图根据弦理论建立粒子物理学的实际模型。

简介弦唯象学(英语:String phenomenology)是理论物理学的一个分支,试图根据弦理论建立粒子物理学的实际模型。1

对偶性 (弦论)弦论中的对偶性(duality),是指弦论中的是两个看似不相同的理论,实际上是等价的。所谓等价,意思是即使两个理论对实验本身的物理描述可能完全不同,两个理论对所有可以测量的值都有相等的预测。

弦论的对偶性是其中心观念之一。在弦论的第二次革命中发现了许多新的对偶性,它解决了弦论中许多困难的问题。除此之外,对偶性还有另一个重要的结果。过去研究弦论的人发现了五种不同的超弦理论,现在却发现这些看似不同的弦论,其实互为对偶、拥有相同的物理性质。换句话说,我们只有一个理论,但它有五种不同的表示方法。这个唯一的理论,现在被称为M理论。 常见的对偶性有:S对偶、T对偶、U对偶,次外尚有镜像对称性、AdS/CFT对偶等。

IIA型弦与11维的对偶性M理论的11维真空,能用一个称作11维时空普朗克质量mP的单一标度表现。若将11维时空中的一个空间维度,取成半径为R的圆周,就可以将它与类型IIA的弦论联系起来。IIA弦论有一个无量纲的弦耦合常数gs,它由膨胀子场Φ(一种属于类型ⅡA超引力多重态的无质量标量场)的值决定。IIA的质量 标度ms的平方,给出基本IIA弦的张力,11维与10维的ⅡA的参数之间的关系为(略去数值因子2π)ms2=RmP3,gs=Rms 。
IIA理论中经常使用的摄动分析,是将ms固定而对gs展开。从第二个关系式可见,这是关于R=0的展开,这也就是为什么在弦摄动理论中没有发现11维解释的原因。半径R是一个模(modulas),它由带有平坦势的无质量标量场的值确定。若这个模取值为零,对应于ⅡA理论;若取值无穷大,则对应于11维理论。

E型杂弦与11维的对偶性杂弦HE与11维理论也有相似的联系,差别在于紧致空间不再是圆周,而是一条线段。这个紧致化会产生两个平行的10维切面,而每一面又对应于一个E8规范群。引力场存在于块中。从11维时空更能说明,为什么采用E8×E8规范群才会是量子力学“反常自由”的。

I型弦与O型杂弦的对偶性根据诺特定理,对称性对应于某一种物理守恒定律,电荷、色荷,以及别的守恒荷,都能看成是诺特荷。某些粒子的特性在场变形下保持不变,这样的守恒律称为拓扑的,其守恒荷为拓扑荷。按照传统观点,轻子与夸克被认作是基本粒子,而磁单极子等携带拓扑荷的孤立子是派生的。至于磁单极子带诺特荷,而电子带拓扑荷的此一猜想,被称作蒙托南-奥利夫猜想,它给物理计算带来了意料不到的惊喜—带有e荷的基本粒子等价于1/e的拓扑孤子,而粒子的荷对应于它的相互作用耦合强度。夸克的耦合强度较强,因而不能用摄动论计算,但可用耦合强度较弱的对偶理论计算。
这方面的一个突破性进展,是由印度物理学家森(Ashoke Sen)取得的。他证明在超对称理论中,必然存在既带电荷又带磁荷的孤立子。当这一猜测推广到弦论后,它被称作S对偶。S对偶是强耦合与弱耦合之间的对偶性,由于耦合强度对应于膨胀子场Φ的值。O型杂弦与I型弦可通过各自的膨胀子场联系起来,即Φ(I)+Φ(HO)=0。弱HO耦合对应Φ(HO)=-∞,而强HO耦合对应Φ(HO)=+∞。可见,杂弦是I型弦的非摄动激发态。这样,S对偶性便解释了一个长期令人疑惑的问题:HO弦与I型弦,有着相同的超荷和规范群SO(32),却有着非常不同的性质。

IIA型弦与IIB型弦的对偶性在弦论中,还存在着一种在大小紧致体积之间的对偶性,称作T对偶。举例来说,IIA型弦理论在某一半径为RA的圆周上紧致化和IIB型弦理论在另一半径为RB的圆周上紧致化,两者是等价的,且有关系RB=(ms2RA)-1。于是,当模RA从无穷大变到零时,RB从零变到无穷大,这给出IIA和IIB之间的联系。两种弦间的联系,虽有技术细节的不同,本质却是一样的。
弦论还有一个定向反转的对称性,如将定向弦进行投影,将会得到两种不同的结果:扭曲的非定向开弦和不扭曲的非定向闭弦。这就是IIB型弦和I型弦之间的联系。在M理论的语言中,这一结果可视开弦为D膜的衍生物。1

弦论地景地景landscape)是弦论的一项重要概念,反映了所有的物理参数,因此形成充斥着大量维度的地形,如同高山和谷地一般。处在谷地的流形,是属于稳定真空,也是多维地景的极小值——我们的宇宙即位于此一状态。

因为参数不只一个,我们实际上应把这个真空能量曲线想像成是一个复杂、多维度山脉的剖面,美国史丹佛大学的色斯金将此描述成弦论地景。由于这个多维地景的极小值(球可以停驻的凹陷底部),对应着时空的稳定组态(包括膜与通量),所以称为稳定真空。
真实的地景只容许两个独立的方向(南北向与东西向),而这也是我们所有可以画出的方向。但是弦论地景因为可以拥有上百个方向,因此远比真实地景来得复杂。弦论地景的维度不应与世界的真正维度相混淆;每个座标轴所测度的,并非物理空间中的某些位置,而是几何的某个面向,例如把手的大小或膜的位置等。1

参见弦宇宙学

弦理论图景

弦论对偶性

本词条内容贡献者为:

李航 - 副教授 - 西南大学

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。