贝尔定理

科技工作者之家 2020-11-17

在理论物理学里,贝尔定理(Bell's theorem)表明任何关于定域隐变数的物理理论无法复制量子力学的每一个预测。贝尔定理是一种不可行定理,又知名为贝尔不等式。这定理在物理学和科学哲学里异常重要,因为这定理意味着量子物理必需违背定域性原理或反事实确定性 。发表于1964年,贝尔定理是因爱尔兰物理学家约翰·贝尔而命名。

贝尔定理的实验验证所得到的结果,符合量子力学理论的预测,并且显示某些量子效应似乎能够以超光速行进。由于这验证结果,所有归类为隐变数理论、经得起考验的量子理论都只能限制为非定域种类。请特别注意,所有至今完成的贝尔定理的实验验证,没有一个实验能够完全满足贝尔定理所有内含的要求。于此,没有任何结果能够给出决定性的总论。

简介在理论物理学里,贝尔定理(Bell's theorem)表明任何关于定域隐变数的物理理论无法复制量子力学的每一个预测。贝尔定理是一种不可行定理,又知名为贝尔不等式。这定理在物理学和科学哲学里异常重要,因为这定理意味着量子物理必需违背定域性原理或反事实确定性。发表于1964年,贝尔定理是因爱尔兰物理学家约翰·贝尔而命名。

概述贝尔不等式为:**|Pxz-Pzy|≤1+Pxy,**其中,Ax为正的意思为在x轴上观察到A量子的自旋态为正,而Pxz代表Ax为正和Bz为正的相关性。

在经典力学中,此不等式成立。在量子世界中,此不等式却不成立。

贝尔定理意味着,阿尔伯特·爱因斯坦所主张的定域性原理,其预测不符合量子力学理论。由于很多实验的结果与量子力学理论的预测一致,显示出的量子关联远强过定域隐变数理论所能够解释,所以,物理学者拒绝接受定域实在论对于这些实验结果的解释。陷入找不到满意解答的窘境,物理学者只能无可奈何地勉强承认这是一种非因果关系的超光速效应。

贝尔定理可以应用于任何由两个相互纠缠的量子位元所组成的量子系统。最常见的范例是纠缠于自旋或偏振的粒子系统。

继续发展爱因斯坦-波多尔斯基-罗森佯谬(简称EPR佯谬)的论述(但是选择采用自旋的例子,如同戴维·玻姆版本关于EPR吊诡的论述),贝尔精心设计出一个思想实验:从衰变生成的两颗处于单态的自旋1/2粒子会分别朝着相反方向移动,在与衰变地点相隔遥远的两个地点,分别沿着独立选择的直轴测量两个粒子的自旋,每一次测量得到的结果是“向上自旋”(标记为“+”)或“向下自旋”(标记为“−”)。1

不可行定理在理论物理中,一些定理的内容指出某个情况在物理上是不可能的,这样的定理被称作不可行定理(no-go theorem)。2

参阅贝尔实验的预测(Quantum mechanical Bell test prediction)

CHSH不等式(CHSH inequality)

GHZ实验(GHZ experiment)

莱格特不等式(Leggett inequality)

莱格特-皋格不等式(Leggett-Garg inequality)

莫特问题(Mott problem)

任宁格负结果实验(Renninger negative-result experiment)

本词条内容贡献者为:

王沛 - 副教授、副研究员 - 中国科学院工程热物理研究所

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。