热电制冷

科技工作者之家 2020-11-17

热电制冷是以温差电现象为基础的制冷方法。电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,就会释放出多余的热量。反之,就需要从外界吸收热量(即表现为制冷)。

简介热电制冷的机理完全不同于蒸汽压缩式制冷、吸收式制冷。它是以温差电现象为基础的制冷方法。

用两种不同的金属丝相互连接在一起,形成一个闭合电路,把两个连接点分别放在温度不同的两处,就会在两个连接点之间产生一个电势差——接触电动势。同时闭合电路中就有电流通过。

反过来,将两种不同的金属线相互连接形成的闭合线路已通直流电,会产生两个不同温度的连接点。

只要通以直流电,就会使其中一个连接点变热,另一个连接点变冷。这就是帕尔帖效应,亦称温差电现象。生产冷端就是我们需要的制冷。

半导体电子制冷的效果就主要取决于电荷载体运动的两种材料的能级差,即热电势差。纯金属的导电导热性能好,但制冷效率极低(不到1%)。

半导体材料具有极高的热电势,可以成功的用来做小型的热电制冷器。 经过多次实验,科学家发现:P型半导体(Bi2Te3-Sb2Te3)和N型半导体 (Bi2Te3-Bi2Se3)的热电势差最大,应用中能够在冷接点处表现出明显制冷效果。

电子冰箱简单结构为:将P型半导体,N型半导体,以及铜板,铜导线连成一个回路,铜板和导线只起导电作用,回路由 12V直流电供电,接通电流后,一个接点变冷(冰箱内部),另一个接头散热(冰箱后面散热器)。

其他信息1834年法国物理学家帕尔帖在铜丝的两头各接一根铋丝,在将两根铋丝分别接到直流电源的正负极上,通电后,发现一个接头变热,另一个接头变冷;这说明两种不同材料组成的电回路在有直流电通过时,两个接头处分别发生了吸放热现象。这就是热电制冷的依据。

半导体材料具有较高的热电势可以成功地用来做成小型热电制冷器。右图示出N型半导体和P型半导体构成的热电偶制冷元件。用铜板和铜导线将N型半导体和P型半导体连接成一个回路,铜板和铜导线只起导电的作用。此时,一个接点变热,另一个接点变冷;如果电流方向反向,那么结点处的冷热作用互易1。

热电制冷器的产冷量一般很小,所以不宜大规模和大制冷量使用。但由于它的灵活性强,简单方便冷热切换容易,非常适宜于微型制冷领域或有特殊要求的用冷场所。

热电制冷的理论基础是固体的热电效应,在无外磁场存在时,它包括五个效应:傅立叶(Fourier)效应、焦耳(Joule)效应、塞贝克(Seebeck)效应、帕尔帖(Peltire)效应和汤姆逊(Thomson)效应2。

本词条内容贡献者为:

王宁 - 副教授 - 西南大学

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。