南大王欣然、施毅团队在二维材料的物理性质与电子器件领域取得系列进展

科技工作者之家 2019-12-14

来源:两江科技评论

二维材料原子级的厚度使其拥有独特的电学和光学性质,作为极具竞争力的下一代电子与光电子材料,受到越来越多的关注。二维原子半导体材料具有非零带隙、极限沟道厚度、高迁移率等特点,可以显著增加栅极调控能力,是最有希望继续延伸摩尔定律的新型材料之一。二维分子晶体由于其在层间以及层内均为范德华相互作用,展现出更强的偶极子相互作用,因此对分子半导体维度的控制有望大幅度改变激子耦合作用,从而产生新的光电器件应用。

01

在电子器件应用方面,由于二维材料表面无悬挂键,无法利用传统原子层沉积工艺沉积高质量栅极介质层,导致界面态和等效氧化层厚度(EOT)远高于硅基CMOS晶体管。因此,开发针对二维材料的高质量、超薄、并且与大面积工艺兼容的介质层集成工艺,是二维电子器件应用的关键瓶颈之一。

为了解决以上问题,南京大学电子学院王欣然、施毅教授团队与南京大学现代工学院、化学化工学院以及加州大学洛杉矶分校、新加坡国立大学、东京大学、中电集团55所等单位合作利用了二维材料与分子之间的范德瓦尔斯作用,以0.3纳米厚的单层分子晶体作为界面层,在二维材料上成功实现了高质量、超薄high-κ介质层沉积技术。凭借该技术,团队首次在石墨烯、MoS2WSe2等二维材料上实现了1 nm EOT,并具备原子级的平整度、低界面态密度和高击穿电场。重要的是,介质层的漏电流密度与CMOS水平相当,满足了国际半导体技术路线图对低功耗逻辑晶体管的要求。利用分子辅助的超薄介质层沉积技术,研究人员将二维半导体场效应晶体管的亚阈值摆幅降至60 mV/dec的理论极限,工作电压降至0.8 V,并且在20 nm沟道长度下未发现显著的短沟道效应。进一步,实现了功耗小于1 nW的二维CMOS逻辑反相器,并通过石墨烯射频器件验证了介质层可以工作在10 GHz以上。值得指出的是,该技术适用于多种二维材料,并兼容大面积化学气相沉积样品。此项研究突破了二维电子器件超薄介电层集成这一瓶颈,有望推动二维集成电路的发展,该工作以《Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices》为题近期发表于Nature Electronics

20191214020830_e950cf.jpg


超薄high-κ介质层在二维材料上的沉积以及低功耗晶体管

摘自Nature Electronics(2019) doi:10.1038/s41928-019-0334-y

02

在另一个工作中,南京大学电子学院王欣然、施毅教授团队与南京大学化学化工学院、现代工学院、东南大学、加州大学伯克利分校、威斯康星大学麦迪逊分校、香港中文大学和英国利物浦大学等单位开展国际合作,探索了二维分子晶体中的新奇光学性质和光电器件应用。团队通过物理气相沉积获得了单层苝衍生物有机分子晶体,发现其具有超强的光学响应。由于单层薄膜中分子在面内聚积,可产生强偶极相互作用,这是长距离J聚集体的理想条件。在单层有机薄膜中,Frenkel激子巨大的振子强度导致其具有很强的光学吸收(室温和4K下分别超过15%30%),以及接近100%的荧光效率。基于变温实验和密度泛函理论计算,随着温度降低,激子波函数的尺寸逐渐增大,在低温下可以达到百分子量级,达到无机半导体中的Wannier激子的尺寸。研究人员还实现了基于单层分子晶体的发光二极管器件,其本征工作频率可以超过30GHz该研究以《Strong optical response and light emission from a monolayer molecular crystal》为题近期发表于Nature Communications


20191214020830_eb09be.jpg

二维有机晶体的光致发光性质

(摘自Nature Communications(2019) 

  doi:10.1038/s41467-019-13581-9

 文章链接

[1] Li, W., Zhou, J., Cai, S. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat Electron (2019) doi:10.1038/s41928-019-0334-y

[2] Zhao, H., Zhao, Y., Song, Y. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat Commun 10, 5589 (2019) doi:10.1038/s41467-019-13581-9

网页链接:

https://ese.nju.edu.cn/cb/41/c22537a445249/page.htm?from=groupmessage&isappinstalled=0

来源:imeta-center 两江科技评论

原文链接:http://mp.weixin.qq.com/s?__biz=MzU0NDgwMjI0MQ==&mid=2247489680&idx=1&sn=8a8fbe2287e77d011b3409586a3f1e57&chksm=fb77cc3ecc0045288805dd5f1d4e75026b3d910022b6107988bd4cf079907c4acc46722410c5&scene=27#wechat_redirect

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

二维材料 晶体 二维 激子 王欣然

推荐资讯