Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6

Qian Zhang;Kai Zhao;Qicong Shen;Yanmei Han;Yan Gu;Xia Li;Dezhi Zhao;Yiqi Liu;Chunmei Wang;Xiang Zhang;Xiaoping Su;娟 刘;Wei Ge;Ross L. Levine;楠 李;雪涛 曹

Chinese Academy of Medical Sciences;Second Military Medical University;Memorial Sloan-Kettering Cancer Center

发表时间:2015-9-17

期 刊:Nature

语 言:English

U R L: http://www.scopus.com/inward/record.url?scp=84942050633&partnerID=8YFLogxK

摘要

Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IκBζ, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IκBζ at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.

被引量

期刊度量

Scopus度量

年份 CiteScore SJR SNIP
1996
1997
1998
1999 15.599 7.183
2000 11.917 6.845
2001 9.874 6.735
2002 10.114 7.208
2003 11.384 7.504
2004 11.222 7.523
2005 10.333 7.199
2006 9.702 7.156
2007 10.344 7.097
2008 13.17 7.321
2009 15.185 8.2
2010 16.465 8.23
2011 53.1 17.598 8.652
2012 51 17.546 8.409
2013 50.9 19.69 8.482
2014 49.9 18.78 7.946
2015 51.6 19.669 8.052
2016 49.2 18.389 7.901
2017 53.7 17.875 8.647
2018 55.7 16.345 9.448
2019 51 14.047 8.82
2020 55.9
2021

相似文献推荐