北师大报道首例非公度调制结构红外非线性光学材料

科技工作者之家 2020-05-20

来源:CBG资讯


wt_a32302020520122116_c004f4.jpg 

红外非线性光学材料(NLO)在长距离激光通讯、红外对抗及光电设备等领域具有非常重要的应用价值。现有的红外非线性光学商用材料AgGaS2(AGS), AgGaSe2和ZnGeP2虽然具有非常大的非线性系数,但其存在的缺点如:带隙较小,激光损伤阈值低,不能实现相位匹配等限制了这些材料的应用。因此,同时提升红外非线性光学材料的激光损伤阈值和非线性光学性质是该领域的一个难点和热点,具有重要的科学意义和应用价值。

 

在天然矿物或人工合成的固体材料中,有极少数特殊晶体并不只简单具有普通晶体结构那种三维平移对称性, 而在其中同时存在周期性的畸变结构。这种畸变量的分布可以用“波”的形式表示, 该“波”称为调制波,具有这种特性的晶体结构称为调制结构。非公度调制结构可以引发很多有趣的物理现象,如高温超导,铁电性质,以及电荷密度波(CDWS)等。但是,将非公度调制结构与非线性光学性质联系起来的科学研究迄今还非常罕见。由于非公度调制结构不能用三维空间描述,所以解析这类结构具有一定的难度和挑战性。

 

近日,北京师范大学化学学院吴立明课题组、陈玲课题组首次通过高温固相法,借助多硫化钾助熔剂合成出了两个具有非公度调制结构的多硫化物Re2SnS5(Re=Ba, Sr),相关研究表明Ba2SnS5具有优异的非线性光学性质,当基频光波长为1570 nm时,Ba2SnS5具有相位匹配的二阶倍频响应(SHG)特征,其强度可以达AgGaS2的1.1倍,同时激光损伤阈值(LIDT)可以达到AgGaS2的8倍。这是首例具有非公度调制结构的红外非线性光学材料。通过与北京大学孙俊良课题组合作,运用(3+1)D超空间群理论,成功确定了两个化合物的非公度调制晶体结构。A2SnS5(A = Ba, Sr)分别属于P21212(00γ)00s和P21(α0γ)0(3+1)维空间群,它们的调制波矢q分别为0.24078(16)c* 和0.2447(3)a* + 0.25c*。通过结构分析,确定A2SnS5(A = Ba, Sr)中的调制波主要起源于平均结构中不同的[Sn2S7]∞带状结构。进一步结构分析发现,由于非公度调制的存在,使得Ba2SnS5结构中的阴离子基团发生严重畸变,进而导致晶体中的偶极矩急剧增大,最终大幅提升了该晶体的二阶非线性光学系数。通过与结构相似的周期性晶体α-Ba2SnS5晶体进行比较,他们发现,由于非公度调制的作用,Re2SnS5(Re=Ba, Sr)中的Sn/S阴离子基团的畸变程度分别增大了44%和25%,并显著增强了二阶倍频响应强度,使得Ba2SnS5的SHG比无调制的α-Ba2SnS5大了10倍。另外,通过研究发现,尽管A2SnS5(A = Ba, Sr)的光学带隙比AgGaS2要小,由于A2SnS5(A = Ba, Sr)的热膨胀各向异性相比AgGaS2要小得多(Ba2SnS5 (1.51) < Sr2SnS5 (2.08) < AgGaS2 (2.97)),使得它们承受激光热辐射的能力更强,从而其LIDT可以达到AgGaS2的7到8倍。这项工作首次报道了非公度结构显著增强红外非线性光学性能,为后续非周期结构非线性光学材料的研究提供了重要参考。

 

该工作近期被《德国应用化学》杂志Angewandte Chemie International Edition接收,(DOI: 10.1002/anie.202004059),并入选VIP(Very Important Paper)文章。

 

北京师范大学化学学院理论及计算光化学教育部重点实验室作为第一单位。化学学院博士生李瑞安为该论文的共同一作第一位。该研究得到国家自然科学基金、北师大高层次引进人才基金、化学学院、北京市重点实验室、北京市自然科学基金等资金的大力资助,特此感谢。


来源:BeanGoNews CBG资讯

原文链接:https://mp.weixin.qq.com/s?__biz=MzI4ODQ0NjUwMg==&mid=2247501134&idx=3&sn=c76f0d51665deb4369dfe16a3d89d7b7&chksm=ec3cc407db4b4d11b03993f2654a4d31ae285f13b33cac6e54f247b2c2bf93589949c81b46e0#rd

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

结构 课题组 光学 调制

推荐资讯