武大最新《Nature》:人工光合作用让二氧化碳“变废为宝”!

科技工作者之家 2020-09-10

来源:材料科学与工程

导读:基于太阳能的人工光合作用可以将二氧化碳转化为化学能源,然而催化剂的效率和稳定性一直是限制其得以广泛应用的主要因素。该论文通过在分子尺度精确调控光催化剂TiO2和金属有机框架(MOF)之间的协同作用,实现了优异的CO2光还原催化性能,在350 nm波长下量子效率达到11.3%,转化效率(TOF)结果是参考样品TiO2(P25)的14000倍。

MOF材料是有机配体和金属离子或团簇通过配位键自组装形成的有机-无机杂化材料,框架内的孔隙可以吸附和存储气体分子。结合MOF材料的可调光吸收性质,MOF材料被认为是理想的光催化剂载体。虽然前期已有很多人尝试构建基于MOF的CO2还原复合催化剂,常见的有在MOF表面负载或体相内部包埋金属氧化物纳米颗粒。然而,前期的努力往往只能得到较低的转化效率,其主要的原因在于所构建体系中较低的电荷分离效率以及不同材料间电子转移受限。

9月9日,《自然》(Nature)在线发表了武汉大学在人工光合作用领域的最新研究成果。该研究系统探究了MOF介孔孔道定制TiO2生长的理论机制,最终实现了半导体纳米材料在MOF中的无损填充。两种材料特性的高效协同,将拓展出一系列新型的人工光合作用催化剂。在这项工作中,成功地将TiO2负载MIL-101特定的孔道里,并且实现了负载量可控。模仿自然界的光合作用,负载TiO2的MOF不同组分之间分工协作,实现了电子的快速转移和催化反应的快速进行。基于MOF材料的CO2转化效率首次达到了12 mmol/g/h,远远超出了现有的固体或分子催化剂。

该论文第一署名单位为武汉大学,化学与分子科学学院博士后江卓和2015级博士徐晓晖为共同第一作者,武汉大学邓鹤翔、昝菱教授,上海科技大学Osamu Terasaki教授为共同通讯作者。

论文链接:

https://www.nature.com/articles/s41586-020-2738-2

wt_a82302020091183329_910f04.jpg

通过人工光合作用将二氧化碳还原成有利用价值的化学产品不仅能够为能源危机提供新的解决方案,而且能够有效减少生态环境中二氧化碳的含量。然而,人工直接光还原二氧化碳的效率目前很难超过植物(全光谱下0.5-5%),且往往需要牺牲剂的辅助,而不是像植物一样释放出氧气。

邓鹤翔课题组从材料的合成角度出发,创造性的探索了在介观尺度上(2-50纳米),无机半导体纳米颗粒和金属有机框架(Metal organic framework, MOF)孔道界面的分子定制,实现了单波长光驱动下CO2还原11.3%的表观量子产率(Apparent quantum efficiency),并观察到等当量O2的释放。此分子定制界面的构筑类似于叶绿体中光催化基元的局域化,所设计出的多种“分子隔间”(molecular compartment,I型和II型)能够实现二氧化钛纳米颗粒化学环境的精准定制,从而大幅提高光生电子的分离和利用。

CO2光还原实验表明,TiO2与MOF骨架所构筑的三维有序结构(TiO2-in-MOF)的光催化活性远高于同尺寸的TiO2纳米颗粒及MOFs表面负载的TiO2,充分展示了“分子隔间”的结构优越性。研究表明在II型隔间中的TiO2比I型隔间中的TiO2催化性能高44倍,揭示了介孔微环境对催化活性的影响。值得一提的是,半导体纳米材料与MOF在其孔道中的精确排布并未破坏MOF的局域有序结构。两种材料特性的高效协同,将能拓展出一系列新型的人工光合作用催化剂,有望推动在光吸收波长范围以及量子产率上的更大突破。

wt_a22322000911083329_94605a.jpg

图2 TiO2纳米颗粒在MOF不同介孔孔道中的精确定制

wt_a22322000911083329_97e14b.jpg

图2:负载二氧化钛前后MOF单晶体的高分辨电子显微图像

在此工作的开展的六年半时间内,江卓和徐晓晖直面“纳米功能材料连接、排列及取向的定制”这一关键科学挑战,通过反复尝试和不断优化,系统探究了MOF介孔孔道定制TiO2生长的理论机制,最终实现了半导体纳米材料在MOF中的无损填充。

来源:mse_material 材料科学与工程

原文链接:https://mp.weixin.qq.com/s?__biz=MzA4NDk3ODEwNQ==&mid=2698831566&idx=2&sn=38e913a409021e1286741c66cac9221e&chksm=baf6b6188d813f0eec9d9822fb0de7316da091cfef86b3c57c5d18aaab2e72bcef95756b8973#rd

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

光合作用 纳米材料 人工光合作用催化剂

推荐资讯