连发2篇Nature:上海有机所在有机化学及无机化学取得重大进展

科技工作者之家 2019-10-26

来源:iNature

选择性C–H键功能化的方法为化学家提供了广泛而强大的合成工具,例如无需长时间进行从头合成即可对铅化合物进行后期修饰。鉴于存在大量可用的氢原子转移(HAT)受体,并且生成的自由基中间体可用的反应途径多样,通过氢原子转移(HAT)裂解sp3 C–H键特别有用。然而,位点选择性仍然是一个巨大的挑战,特别是在具有可比性能的sp3 C–H键之间。

2019年10月23日,中国科学院上海有机化学研究所金属有机化学国家重点实验室的刘国生及香港科技大学林振阳共同通讯在Nature 在线发表题为"Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical"的研究论文,该研究报告了铜(Cu)催化的复杂烯烃的位点和对映选择性烯丙基CH氰化,其中以Cu(II)键合的氮(N)为中心的自由基在实现精确的位点特异性HAT中起关键作用 。这一发现为后期研究碳氢键的选择性转化提供了全新的思路。更令人欣喜的是,自由基攫氢所得的烯丙位自由基也可以被体系中的手性铜氰物种所捕捉,同样以高区域、高对映体选择性得到单一的手性氰化产物,从而实现了复杂烯烃分子的精准转化。非常重要的是,该反应体系不仅具有非常宽广的底物普适性和官能团兼容性,而且还适用于复杂药物分子的后期精准修饰,为新药的研发以及药物分子的改造提供新的途径。

另外,2019年10月2日,中国科学院上海有机化学研究所有机氟化学重点实验室董佳家及K. Barry Sharpless共同通讯在Nature 在线发表题为“Modular click chemistry libraries for functional screens using a diazotizing reagent”的研究论文,该研究在寻找新的SuFEx反应砌块的过程中,意外发现一种安全,高效合成罕见的硫(VI)氟类无机化合物FSO2N3(氟磺酰基叠氮)的方法。该方法大大扩展了易获得的叠氮化物和1,2,3-三唑的数量,并且鉴于CuAAC反应的普遍性,该方法应在有机合成,药物化学,化学生物学和材料科学中得到应用(点击阅读);

20191026101641_96ca01.jpg

碳氢键活化是有机化学的圣杯,而基于碳氢键活化的有机分子精准转化则是圣杯中的明珠,一直备受合成化学家的关注。自由基的氢原子转移(Hydrogen atom transfer, HAT)策略是实现碳氢键官能团化一种有效的途径,得到广泛地研究。然而,为了实现有机分子的精准转化,有两个非常关键的科学问题亟待解决:(1)如何实现有机分子中碳氢键的自由基选择性攫氢?以往研究是基于有机分子中具有显著差异的碳氢键来进行的,而结构相似的碳氢键很难实现选择性攫氢;(2)如何控制攫氢后的碳自由基的不对称转化?由于自由基的高活性,其不对称转化的控制非常困难;正是这两个科学问题如两座大山一般的存在,导致有机化合物碳氢键的精准转化鲜见报道。只有突破上述两个科学问题,才有望实现碳氢键的精准官能团化。

20191026101641_9936c1.jpg

sp3 C–H键的位点和对映选择性氧化

为了探索碳氢键的精准转化,上海有机化学研究所刘国生课题组开展了研究。在2016年,他们与美国威斯康欣大学的Stahl 教授合作,首次提出了铜催化自由基接力的新概念,实现了苄位C-H键的不对称氰化反应,揭示了手性的两价铜氰物种可以有效地捕捉苄位自由基,以非常高效、高对映体选择的得到手性腈类化合物,从而实现了从简单石油化工产品到药物分子前体的直接转化(Science 2016, 353, 1014);这不仅回答了上述的第二个科学问题,也为第一个科学问题的研究奠定了坚实的基础。

烯丙位碳氢键与苄位碳氢键的键能相近(BDE:~ 83 和 ~85 kcal/mol),都属于活性的碳氢键范畴,因此实现烯丙位碳氢键的不对称氰化反应是可预期的。然而由于烯烃分子常含有多个烯丙位的氢原子,同时生物活性分子(天然产物、药物等)中也往往存在多个烯烃;因此,多个烯丙位碳氢键的存在导致自由基攫氢的选择性问题;同时形成的烯丙基自由基在后续反应中还存在区域、立体和对映体选择性等问题,使得反应变得异常复杂。为了探索烯丙位碳氢键的选择性攫氢问题,上海有机化学研究所刘国生课题组与香港科技大学林振阳课题组合作,首次发现金属铜物种可以与含磺酰胺的氮自由基发生配位(Cu-bound N-centered radical, Cu-NCR),由此来调节氮自由基的攫氢能力和选择性,实现了高位点选择性的烯丙位碳氢键的攫氢反应(site-specific HAT);并从理论计算角度阐述了金属调控氮自由基选择性攫氢的新机制。

20191026101641_9c7dd8.jpg

机制研究

这一发现为后期研究碳氢键的选择性转化提供了全新的思路。更令人欣喜的是,自由基攫氢所得的烯丙位自由基也可以被体系中的手性铜氰物种所捕捉,同样以高区域、高对映体选择性得到单一的手性氰化产物,从而实现了复杂烯烃分子的精准转化。非常重要的是,该反应体系不仅具有非常宽广的底物普适性和官能团兼容性,而且还适用于复杂药物分子的后期精准修饰,为新药的研发以及药物分子的改造提供新的途径。该研究是刘国生课题组在他们前期苄位碳氢键不对称氰化研究基础上的又一重大突破。

该工作得到了科技部、国家自然科学基金委、中国科学院、上海市科委,上海有机所和金属有机国家重点实验室等的基金资助。

注:解析参考自中科院上海化学研究所。

解析链接:

http://www.sioc.ac.cn/xwzx/tpxw/201910/t20191024_5411978.htm

参考消息:

https://www.nature.com/articles/s41586-019-1655-8#auth-6

来源:Plant_ihuman iNature

原文链接:http://mp.weixin.qq.com/s?__biz=MzU3MTE3MjUyOA==&mid=2247505210&idx=5&sn=8e1bd37a6a513396b98d20eb9be4e64d&chksm=fce6a6e5cb912ff39360f23f06e5d7c746813518ccd00cbcad8ee693c0afd9d8a2868be9da0f&scene=27#wechat_redirect

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

手性 有机化学 自由基反应

推荐资讯