浙大徐平龙团队揭示核酸免疫识别的线粒体功能及分子机制

科技工作者之家 2020-11-16

来源:生物谷

核酸天然免疫识别,是一类进化上高度保守的细胞生物学和免疫学机制,存在于几乎所有类型的细胞中。核酸识别不仅对宿主细胞抵抗外源微生物感染至关重要,也在自身免疫性疾病、慢性炎症疾病和肿瘤免疫中有重要功能。但是至今为止,对核酸免疫的细胞层面上的功能,除了细胞自噬、细胞分化/转分化和细胞衰老外,所知还很有限。另一方面,是否核酸免疫识别能够主动控制线粒体这一关键的细胞器的形态和功能,也不清楚。2020年11月10日,浙江大学徐平龙团队在 Cell 子刊 Molecular Cell 杂志发表了题为:TBK1-mediated DRP1 targeting confers nucleic acid sensing to reprogram mitochondrial dynamics and physiology 的研究论文。该研究揭示了核酸天然免疫识别通过MAVS-TBK1-DRP1信号轴调控线粒体形态和生理功能的重要发现。这些新发现是核酸免疫识别在信号机制与功能基础理论上的突破,也为发展抗病毒和自身免疫疾病的防治手段提供了新的理论与实验依据。线粒体是细胞的能量供应单位。线粒体动力学,通过线粒体持续而快速的融合和分裂,控制线粒体在能量代谢、细胞器完整和细胞命运决定等多个重要进程的关键功能。通过超高分辨率显微技术,研究团队意外发现在RNA免疫识别活化过程中,线粒体呈现显著融合的形态。 这一现象需要核酸识别的关键激酶TBK1以及调控线粒体分裂的关键因子DRP1。定位于线粒体外膜的RNA识别关键接头分子MAVS在激活后,招募DRP1到MAVS信号复合体,随后被复合体中的TBK1高度磷酸化修饰。其中,TBK1对DRP1蛋白S412和S684位点的磷酸化能有效阻止DRP1形成高次序聚合的环状结构,因而使其完全丧失并显性抑制(dominant negative)正常DRP1分裂线粒体的功能。 研究团队发现,因DRP1失活形成的高度融合的线粒体是MAVS形成高次序聚集以及RNA免疫识别信号正常激活的必要条件。他们在基因敲入小鼠、斑马鱼、小肠类器官等模型中也发现,阻断MAVS-TBK1-DRP1信号轴,能够强烈抑制抗病毒免疫应答。另一方面,TBK1-DRP1信号也在细胞营养应激诱导的线粒体动力学调控和细胞命运决定中起关键功能。利用基因敲入或AAV载体在小鼠中人工模拟TBK1-DRP1信号轴的激活,则能观察到与DRP1先天突变病人相似的缺陷表型。因此,该研究首次揭示了核酸免疫识别对关键细胞器形态与功能的控制,这是核酸天然免疫生物学功能研究的重要进展。研究工作鉴定了MAVS-TBK1-DRP1-mitochondrial dynamics这一全新的信号通路与细胞器结构/功能耦合的核酸识别信号轴,并揭示了该信号轴是RNA免疫识别中的关键环节。 核酸免疫识别MAVS-TBK1-DRP1信号轴控制线粒体的形态与功能此外,该研究也揭示了线粒体动力学以及DRP1蛋白活性的全新调控机制以及该机制的细胞和生理功能。这些新发现是核酸免疫识别在信号机制与功能基础理论上的突破,也为发展抗病毒和自身免疫疾病的防治手段提供了新的理论与实验依据。 
wt_a12302201117074958_62c2e4.jpg
wt_a42312020117074958_68ec02.jpg

来源:BIOONNEWS 生物谷

原文链接:http://mp.weixin.qq.com/s?__biz=MzI2NjY1NjA5Mw==&mid=2247520028&idx=5&sn=74b631ebd08d1cf70d66630c67de87fb

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

细胞 免疫 核酸识别

推荐资讯