• 科技工作者之家
  • 科技资讯
  • 中国天眼FAST的首批科学成果、高压下富氢化合物高温超导体、纳米光子学、暗物质、实验物理 | 本周物理讲座

中国天眼FAST的首批科学成果、高压下富氢化合物高温超导体、纳米光子学、暗物质、实验物理 | 本周物理讲座

科技工作者之家 2021-03-09

来源:中国物理学会期刊网


1Understanding Biomineralization Processes using In-situ CryoTEM

报告人:Dr. Yifei Xu,University of Leeds, UK

时间:3月11日(周四)15:00

单位:中科院物理所

参会方式:腾讯会议

会议ID:453 320 442

会议密码:0311

会议链接:https://meeting.tencent.com/l/QCGX7Z3iTvVn


摘要:

Biominerals such as bones, teeth and shells have attracted intensive research interests due to their sophisticated microstructures and outstanding mechanical performances. However, so far little is known about their formation processes, i.e., biomineralization processes. These processes usually happen in aqueous solutions and involve complex interactions between biomolecules and inorganic crystals. Cryogenic transmission electron microscopy (cryoTEM) uniquely allows high-resolution observation of solution samples in their hydrated status. In combination with multiple time point sampling and electron tomography (cryoET), the technique can achieve quasi in-situ 3D observation of solution reactions. Recently, cryoTEM has been widely used to study biomineralization processes and significantly updated our understanding of these systems. In this presentation, I will briefly introduce the basic knowledge of cryoTEM, and review some of my studies of biomineralization processes using this powerful technique.


报告人简介:

Dr. Yifei Xu is a postdoctoral researcher of Prof. Fiona Meldrum’s group at the University of Leeds, UK. He obtained his PhD degree at the School of Physics of Nanjing University in 2016. After that, he worked as a postdoctoral researcher in the group of Prof. Nico Sommerdijk in TU Eindhoven, the Netherlands, and moved to Leeds in 2018. In 2020 he was granted a Marie Sk?odowska Curie Individual Fellowship. The research of Dr. Xu mainly focuses on using cryoTEM and cryoET to resolve the mechanisms underlying complex solution reactions such as biomineralization processes.


2《简明量子力学》课程

报告人:吴飙,北京大学

时间:3月9日 (周二) 18:40

参会方式:蔻享直播

会议链接:https://www.koushare.com/lives/room/426562


摘要:

量子力学诞生于二十世纪早期,是科学史上最深刻的革命之一。它颠覆了经典物理中许多基本观念,为我们描绘了原子分子以及更小基本粒子的神奇行为,它带来的技术革命已经并正在深刻改变人类社会的方方面面。尽管如此的重要,很长一段时间量子力学只被物理学家,少数哲学家和相关人士关心。最近随着量子信息技术的发展,量子力学逐渐为大众所关注。


本课程试图向所有人严肃而又通俗地介绍量子力学。通俗即向尽可能多的人讲述和展示量子力学的美妙和神奇;严肃即意味着用数学来描述量子力学中最深刻的结果,而不只是文字叙述。本课程只要求听众了解基本的高中数学和物理知识。对于任何超越高中水平的数学,比如矩阵,线性空间等,课程将按照需要多少讲解多少的方式介绍,适可而止不过分深入。这些超越高中水平的数学也不难,只要听众有毅力和耐心去做简单的练习,就很快会熟悉和掌握。没有练习就没有理解。


本课程将先简单描述量子力学的发展历史,介绍这些量子之父和他们传奇的事迹。然后我将介绍那个神奇的量子世界:量子态,量子几率,线性叠加,量子纠缠,贝尔不等式,量子全同性和量子测量。为了和经典物理比较,我将在介绍量子力学之前介绍经典力学和旧量子理论。


报告人简介:

吴飙,1992年本科毕业于北京师范大学物理系;2001年在美国德州大学奥斯汀分校获得物理博士学位。2001年-2004年在美国橡树岭国家实验室做博士后,之后加入中科院物理所任研究员。2010年开始在北京大学量子材料科学中心工作。主要从事理论物理方面的研究,具体方向包括:量子算法、量子动力学、超冷原子气,几何相位。


3The Early Sciences from FAST中国天眼FAST的首批科学成果

报告人:Prof. Di Li, National Astronomical Observatories

时间:3月10日(周三)16:00

单位:上海交通大学物理与天文学院

地点:Room 300, No.5 Building, New Buildings of Sciences


摘要:

The mid-1990s witnessed the birth of the FAST concept. The science operation started in 2020. The two-decade 'long march'  never lacked challenges and tribulations. This is a brief summary of our innovations in response. We developed the world’s first commensal observing mode in this band, capable of recording pulsar, Galactic HI, extra-galactic HI, and transient data streams, simultaneously. The thus based Commensal Radio Astronomy FAST Survey (CRAFTS) was approved as one of the five major surveys by the science committee and has produced the first batch of FAST’s science results, including new pulsars, new FRBs, the first paper on systematic timing of FAST new pulsars, etc. Before CRAFTS, there is no major survey that accomplished simultaneously searching for pulsars and imaging HI. CRAFTS helps improve the survey efficiency of FAST by more than three folds. In addition to surveys, FAST has started more than 100 PI-led programs, selected by open competitions through the “shared-risk” and the first open call for proposals. Many proposals focused on new frontiers, such as fast radio bursts (FRB) and exoplanets. FAST joined the compaign to monitor the only Galactic FRB source J1935+2154 and provided the most stringent constraint on its radio flux, which is crucial to understand the origin of FRBs. This result along with the discovery papers has been cited as one of the major scientific achievements by both 《Nature》 and 《Science》magazines.


Human’s view of the cosmos have been entirely shaped by what we can observe. The ultimate goal of FAST is to deepen mankind’s understanding of nature through worldview-altering discoveries.  As envisioned by Dr. Nan, Rendong, “FAST represents the collective ambition of Chinese astronomers to leap from chasing to leading.” It starts now.


报告人简介:

Dr. Li is a radio astronomer. He is the Chief Scientist of both FAST and the radio division of NAOC. He pioneered several observing and data analysis techniques, including HI narrow self-absorption (HINSA) and a new inversion algorithm for solving the dust temperature distribution. These techniques facilitated important measurements of star forming regions, such as their formation time scale. Dr. Li has led and/or made multiple significant discoveries, including the first detection of interstellar molecular oxygen, the first new pulsar, and the first new Fast Radio Burst (FRB) discovered by FAST. He is leading a large FAST survey that has discovered more than 100 pulsars, more than 5 FRBs, and obtained the largest FRB pulse set in the world to date. He has published more than 130 peer-reviewed journal articles with more than 3500 citations. He won the National Research Council (US) Resident Research Fellow award (2005) based on “his outstanding research capabilities” and as “a result of national competition”. He won (as a member) the NASA outstanding team award (2009). He won the 2017 Distinguished Achievement Award (as a major contributor) of the Chinese Academy of Sciences (CAS). He took on many leading and/or advisory roles in national and international organizations, including the Steering Committee of Australia Telescope National Facility (ATNF), the “Cradle of Life” science working group (as a co-chair) of the Square Kilometer Array, the CAS Major-facilities Guidance Group, and the advisory panel of the Breakthrough Listen initiative.


4高压下富氢化合物高温超导体

报告人:马琰铭,吉林大学物理学院

时间:3月10日(周三)15:00

单位:北京大学物理学院

参会方式:腾讯会议

会议ID:170 393 964


摘要:

近年来, 高压强极端条件下的富氢化合物成为高温超导体研究的热点目标材料体系。该领域目前取得了两个标志性进展, 先后发现了共价型 H3S 富氢超导体 (Tc = 200 K) 和以 LaH10(Tc = 260 K, –13 °C), YH6, YH9等为代表的一类氢笼合物结构的离子型富氢超导体, 先后刷新了超导温度的新纪录。这些研究工作燃发了人们在高压下富氢化合物中发现室温超导体的希望。本报告以我课题组的理论工作为基础,介绍高压下富氢高温超导体的相关研究进展和未来展望。


报告人简介:

马琰铭,吉林大学物理学院院长。长期从事高压物理研究工作:发现了钠在高压下从金属转变为绝缘体的“反Wilson转变”,获2015年国家自然科学二等奖;创建了以CALYPSO命名的晶体结构计算方法和软件,被70个国家的3,000余位学者签订版权使用,获2019年国家自然科学二等奖。曾获国家杰出青年基金、长江学者等荣誉,以及国际高压科学与技术协会“Jamieson奖”和意大利理论物理中心“Walter Kohn”奖。2017-2020连续4年入选科睿唯安(Clarivate Analytics)全球高被引学者榜单。任吉林省物理学会理事长、中国物理学会凝聚态理论与统计物理专业委员会副主任,中国核学会计算物理理事会副理事长。


5二维材料中具有声子极化的纳米光子学

报告人:Prof. Rainer Hillenbrand,CIC nanoGUNE BRTA University of the Basque Country

时间:3月10日(周三)19:00

单位:蔻享学术

参会方式:蔻享直播

会议链接:https://www.koushare.com/lives/room/698911


摘要:

在二维材料(范德华材料)中,由光与光学晶格振动耦合产生的声子极化子,表现出超短波长、长寿命和强的电场局域性质,从而可以在纳米尺度下实现对红外光的操纵。。


在本次报告中,我们将介绍使用散射式近场光学显微镜(s-SNOM)和纳米分辨傅里叶红外光谱(nano-FTIR)所得到的最新研究结果,讨论超高局域的声子极化子在实空间的纳米分辨成像,特别是在六方氮化硼薄膜和纳米结构中。我们将展示和分析在纳米级波导和谐振器中的声子极化子行为,以及当二维材料面内介电常数强各向异性时,其独特的波前传播。值得特别指出的是,我们将证明声子极化子可用于实现与纳米级有机分子之间的振动强耦合。


报告人简介:

Rainer Hillenbrand教授来自西班牙CIC nanoGUNE研究所,他2001年在慕尼黑工业大学获得物理学博士学位,1998-2007年在德国马克斯普朗克研究所工作,2003-2007年领导纳米光子学研究小组。


Rainer Hillenbrand率先开发了近场光学纳米成像技术和红外光谱纳米技术,并将其应用在纳米光子学,石墨烯等离基元,材料科学、生物和软物质科学中。2014年,Hillenbrand博士的研究“红外近场光谱学设计开发及新型光谱学方法在自然科学不同领域的应用”获得了Ludwig-Genzel-Price奖。


Hillenbrand博士发表了100多篇具有开创性的科研文章,包括在Science和Nature顶级期刊上发表了很多有影响力的论文,这些论文充分阐述了散射型近场光学显微镜和红外纳米技术领域的开拓性发展和应用。


6Gravitational Production of Dark Matter

报告人:Prof. Tang Yong,UCAS

时间:3月11日(周四)15:00

单位:北京大学物理学院

地点:高能物理研究中心

摘要:

A significant amount of our Universe is composed of dark matter, which has so far eluded various experimental searches, except those astronomical observations that illuminate the gravitational interaction of dark matter. If dark matter is an elementary particle, it should be produced in the early universe, based on the standard model of particle physics and cosmology. In this talk, we shall give an overview how gravitational interaction could contribute to the production of dark matter in inflationary cosmology and discuss various factors that can affect the relic density. 


报告人简介:

Yong Tang got his PhD in 2011 from Institute of Theoretical Physics, Chinese Academy of Sciences. After that, he has been working in National Tsing Hua University, Korea Institute of Advanced Study and University of Tokyo, before joining University of Chinese Academy of Sciences. His research fields include theoretical high energy physics,particle cosmology and gravitational physics.


7素研学生讲坛实验物理

报告人:MIT核工博后,伯克利物理系博后

时间:3月15日(下周一)11:00

单位:素研实验室

参会方式:蔻享直播

会议链接:https://www.koushare.com/lives/room/802986


更多报告信息:中国物理学会期刊网学术讲座列表


往期精彩回顾


1.时空奇点和黑洞 ——2020年诺贝尔物理学奖解读

2.石墨烯掺杂研究达到新水平

3.外尔与杨振宁——物理的真与数学的美 | 量子群英会

4.黑洞照亮宇宙 ——银河系中心黑洞及其物理意义

5.Editor, 我还可以再抢救一下|量子多体中的呐喊与彷徨之七

6.银河系中心超大质量黑洞的探索历程

7.高分辨电子显微学的拓荒者 ——缅怀李方华先生

8.物理学发展史上有哪些重要的时刻?

9.如何理解麦克斯韦方程中的不对称性

10.基于光晶格的超冷原子量子模拟


来源:cpsjournals 中国物理学会期刊网

原文链接:http://mp.weixin.qq.com/s?__biz=MjM5NjYwNzM1Ng==&mid=2651624707&idx=1&sn=10a2fb7357a4236482ad99b660a8e54c

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn