拓扑磁性材料中实现Dzyaloshinskii-Moriya相互作用电调控

科技工作者之家 2021-07-06

近日,中国科学院合肥物质科学研究院强磁场科学中心研究员田明亮、周建辉研、朱相德和澳大利亚皇家墨尔本理工大学教授王澜课题组合作,在层状手性磁材料拓扑霍尔效应量子调控研究中取得进展。研究发现,在过渡金属硫化物TaS2中插层磁性原子Fe可实现Dzyaloshinskii-Moriya(DM)相互作用。通过一种新型的质子门电压技术,研究人员在该体系中插层质子,并进一步实现了DM相互作用以及拓扑霍尔效应的电调控。相关研究成果以Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation为题,发表在《自然-通讯》(Nature Communications)上。

可调节的DM相互作用有助于实现和操控拓扑磁结构(如手性磁孤子和磁斯格明子),这是未来低功耗电子器件的一个重要研究方向。目前,学界在很多具有强自旋轨道耦合作用以及空间反演对称破缺的磁性材料中实现了各种拓扑磁结构,但在层状材料中实现DM相互作用并不多见。研究团队以过渡金属TaS2为例,通过Fe插层实现了破坏空间反演对称性的手性铁磁FexTaS2(0.28≤x≤0.33)。通过理论分析计算,该团队证实了体系中存在较大的DM相互作用,并进一步在实验上观测到了由DM相互作用导致的拓扑霍尔效应。然而,电调控这些材料中的DM相互作用以及拓扑磁结构面临挑战。这是由于很多手性磁结构体系具有大的载流子浓度,传统的电场调控以及广泛运用的锂离子液技术只能实现材料近表面有限的载流子调控。

王澜课题组近年来发展出一种新型的全固态质子门电压技术,通用电场诱导的质子插层能够实现超高载流子浓度的调控。研究团队利用这种门电压技术,将质子插层到Fe0.28TaS2纳米片中,并实现了高达1022 cm-3量级的载流子浓度的调控。理论分析发现,改变系统的载流子能够进一步通过Ruderman-Kittel-Kasuya-Yosida机制来实现对DM相互作用的调控。实验发现拓扑霍尔效应在较小的门电压下(-5V)增大了四倍,揭示了对DM相互作用的极大调控。研究成果获得国外媒体(如Science Daily、Phys. org、EurekAlert等)的报道。

研究工作获得澳大利亚研究委员会基金、国家自然科学基金、中科院青年创新促进会的支持。

20210706191140_cbdf1c.jpg

(a)微纳器件的原理结构示意图;(b)不同门电压下的霍尔电阻率与外加磁场的洄滞曲线;(c)不同门电压下的反常霍尔电阻率(左纵轴)和拓扑霍尔电阻率(右纵轴)

来源:中科院之声

原文链接:http://mp.weixin.qq.com/s?__biz=MjM5NzIyNDI1Mw==&mid=2651797032&idx=3&sn=d7b9bc0ed09bfd81c62c3d072702d5ab

版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。

电话:(010)86409582

邮箱:kejie@scimall.org.cn

技术 研究 量子调控

推荐资讯