真空声子传热:改写教科书的第4种热传递方式被发现了

科技工作者之家 2020-07-30

来源:环球科学

量子涨落使得声子可以在真空中传递热量。(图片来源:张翔/加州大学伯克利分校)

还记得热传递的3种方式吗?在物理课本上,除了热辐射,热传导、热对流这两种通过声子传热的方式,都无法在真空中发生。但在量子物理学家看来,真空并不是一片真正的“虚空”,而是充满了量子涨落。一项近期发表于《自然》杂志的实验就首次证明,量子效应可以让声子在真空中传递热量。终于,一种全新的热传递方式被找到了。

我们从小就会接受这样的教育:做饭时不要碰灶台上的锅,也不要靠近火焰,不然就会被烫伤。无论是通过直接接触,还是借助光的辐射,热传递总会让我们大吃苦头,并且印象深刻。

在中学物理课上,我们进一步学习了热量的3种传递方式:通过直接接触传递热量的热传导、通过液体或气体介质传热的热对流,以及由光子(电磁辐射的载体)传热的热辐射。其中,除了热辐射,前两种热传递方式都无法在真空中进行。

现在,科学家发现了一种全新的热传递方式。他们利用了量子力学匪夷所思的性质,在不借助光子的情况下,让热量从真空中的一点传到另一点。

用量子涨落传热?

热量是物体内部微观粒子无规则运动的表现——微观粒子运动更快时,物体的温度也更高。在宇宙尺度上,恒星的热量大多借助光子在真空中传递——这正是太阳从1.5亿千米外将热量传递至地球的方式。不过在地球上,多数情况下,热量以接触的方式借助声子(原子振动的集体激发)来传递的。

按照此前的观点,若想借助声子传递热量,那么两个物体必须接触,或者它们之间至少要有空气等介质的存在。如果真空将两个物体隔开,就无法通过声子传递热量了。热水壶就是根据这个原理制造的:热水壶的外壳和内胆之间被抽成了真空,这样瓶里的水就可以长时间保温了。然而随着量子力学的发展,一些科学家开始猜测,声子或许可以在真空中传热。这个猜想基于一个令人难以置信的事实:从量子力学的角度来说,空无一物的真空是不存在的。

根据量子力学的观点,宇宙在本质上就是模糊的。打个比方来说,竭尽所能,你也无法同时确定一个亚原子粒子在某一时刻的动量和位置。这种不确定性的后果就是,真空永远不完全是空的,而是充斥着量子涨落——也就是所谓的“虚粒子”的不断出现和消失。

几十年前,科学家发现虚粒子并不只存在于理论中。事实上,它们产生的力是可以被探测到的。比如卡西米尔效应——这个效应指将两个物体近距离放在真空环境中时,它们之间存在微小的引力。例如,你在真空中把两面镜子面对面放在一起,由于虚光子会不断出现和消失,其产生的力就会使镜子的表面弯曲。

这个现象激发了物理学家的思考,如果这些短暂的量子涨落能够产生真实的力,那么它们或许也能产生其他效果——比如在没有热辐射的情况下传递热量。

为了理解声子如何通过量子涨落传热,让我们假设真空中有两个分开放置且温度不同的物体。高温物体中的声子可以将热量传给真空中的虚粒子,然后这些虚粒子又将热量传给低温物体。如果我们将两个物体都视为振动的原子的集合体的话,那么虚粒子就像一根弹簧,将一个物体的振动传给另外一个。

帝国理工大学的物理学家John Pendry(未参与本研究)表示,关于量子涨落是否真的能实现声子在真空中的传热、如果能传热,效率又有多高,“这些问题在最近十年备受争议。不同理论物理学家对此的估算存在很大的差异,因为计算过程非常困难。”他解释道,总的来说,前人的研究预测,只有当两个物体间的距离处于纳米尺度时,这种作用才能被观察到。然而,在那么短的间距下,两个物体间的静电作用或其他纳米尺度的作用会产生很强的干扰,因此要观察到声子的热传递效应非常困难。

热传递的新机制

在这篇最新论文中,为了在几百纳米的尺度下实现声子的传热,加州大学伯克利分校的张翔带领团队开展了实验。他们使用了两片氮化硅薄膜,每片只有约100纳米厚。膜中振动的原子使每张膜都以一定频率前后振荡,因此当温度变化时,膜的运动方式也会发生变化。这种膜又轻又薄,所以当其中一片的能量对另一片的运动产生影响时,研究者可以很容易地观察到这种效应。

实验装置图。(图片来源:张翔/加州大学伯克利分校)

张翔团队意识到,如果两张薄膜的尺寸相同,但温度不同,那么它们振动的频率就会不同。因此,研究者特地定制了两张膜的不同尺寸,使它们在不同的起始温度下(分别是13.85℃和39.35℃),都能以每秒191600次的频率振动。当两张膜共振时,能量就能迅速交换。

另外,研究者确保了两张膜相互平行,误差不超过几纳米。同时,他们还保证膜非常光滑,表面的凹凸不超过1.5纳米。在实验中,两张膜被固定在了真空室的两侧,他们用加热器对其中一张膜加热,同时用制冷器给另一张降温。为了探测振动频率,也就是温度的变化,两张膜的表面都覆盖了薄如蛛网的金反射层,并用微弱的激光对其照射。经历了多次实验后,研究团队确认,膜与真空室的接触面不存在热传导,并且两张膜之间也没有借助电磁波的热辐射发生。

张翔表示:“这项实验对温度、距离和校准的控制精度有极高的要求。我们有一次尝试在夏天进行这个实验,结果受到了实验室室温升高的影响。另外,为了排除噪音,测量本身也花了很长时间,每个数据点都需要测四个小时。”

最终,研究团队发现,当将两张膜的距离低于600纳米时,它们的温度就发生了变化,并且该变化无法用其他理论解释。当相距不足400纳米时,热交换的速率足够让膜的温度发生明显变化。

实验成功后,研究者计算出实验中声子传递能量的最高效率:约6.5×10-21焦耳/秒。按这个速率计算,如果想要传递一个可见光光子的全部能量,则需要50秒。尽管这看起来微不足道,张翔认为这仍然是“热量在两个物体之间传递的新机制”。

真空 真空环境 热传递

推荐资讯