敏感度编码技术

科技工作者之家 2020-11-17

**敏感度编码技术(SENSitivity Encoding,SENSE)**是磁振造影(Magnetic Resonance Imaging)领域中,一种相当经典的平行造影方法,为克拉斯·普鲁士曼(Klass Pruessmann)在1999年所提出。

简介**敏感度编码技术(SENSitivity Encoding,SENSE)**是磁振造影(Magnetic Resonance Imaging)领域中,一种相当经典的平行造影方法,为克拉斯·普鲁士曼(Klass Pruessmann)在1999年所提出。1

核磁共振影像的成像原理根据核磁共振和拉莫尔进动两个理论的描述,人体内的氢原子在外加高磁场的状况下将会对着外加磁场方向产生进动,而其进动的角频率将和外加磁场的强度成正比。以数学来描述则可写成拉莫尔方程式(Larmor Equation):

若对进动的氢原子施以一个与进动频率相同、方向和主磁场垂直的电磁脉冲{\displaystyle B_{1}},则原子核的磁矩同样受拉莫尔方程式的支配,对磁场的方向产生进动。若是脉冲时间控制得当,则磁矩将能落在横断面(Transverse Plane)上,被线圈收取到信号。

然而,要进一步的透过这些磁矩的电磁讯号创造出一张影像,必须加入空间编码的概念。由于氢原子在不同的磁场下会有不同的共振频率,因此若是可以创造随位置而改变的磁场,则空间的位置便可以被“编码”在电磁讯号的频率上。目前核磁共振影像的编码方式是透过在三个正交(Orthogonal)的方向上配备梯度磁场线圈(Gradient Coil),并透过脉冲序列(Pulse Sequence)控制这些磁场的开关时机,来达到空间编码。

值得注意的是,若是同时对两个方向都进行频率上的编码,则会造成频率判读上的困扰。举例而言,在x方向做两单位的频率移动,和在x方向及y方向各做一单位频率移动,两者的结果是无法分辨的。因此,以二维影像来说,一个方向的资讯会透过讯号的频率来编码,而另一个方向则会透过事先开启梯度磁场来累积相位差异,达到编码的效果。前者被称为“频率编码”(Frequency Encoding),后者被称为“相位编码”(Phase Encoding)。惯例上,频率编码方向会是二维影像的x方向,相位编码则是二维影像的y方向,若做三维影像时,z方向也会做相位编码。最后,透过傅里叶变换处理这些编码资讯,便可还原这些空间频率的资讯成为一张影像。1

线圈敏感度、阵列线圈与平行造影若把所欲成像的物体切割成一个一个的体素(Voxel),则线圈敏感度(Coil Sensitivity)描述的是射频接收线圈在某一个体素上的讯号接收能力。线圈敏感度映射图(Coil Sensitivity Map)则把每个体素的敏感度集结起来,描绘一个线圈在某空间范围的线圈敏感度。一般来说,表面线圈(Surface Coil)的敏感度映射图呈现较不均匀的分布,越靠近的线圈表面敏感度越高,而越远离线圈的地方敏感度越低;体线圈(Volume Coil)的敏感度分布则较为均匀,其线圈敏感度在内部的任一处都有差不多的表现。

值得注意的是,表面线圈虽不均匀,在敏感度较高的区域,却有着比体线圈更好的敏感度表现。因此,将数个表面线圈合成一组的“阵列线圈”(Phased Array Coil),目前也成为机器上必备的设备。阵列线圈中的每一个表面线圈都是独立的,有自己的一套信号处理电路,因此可以同时对一个物体收集讯号。进一步推论,既然多个线圈都在对同一个目标收集讯号,那么让每个线圈都少收一点资讯,总资讯量大致得以不变,但撷取速度却可以大幅提升。这样的思维正是平行造影的基本脉络,而SENSE也是建立在阵列线圈和平行造影的一项技术。1

参见平行造影

本词条内容贡献者为:

黎明 - 副教授 - 西南大学

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。