连续浇铸法

科技工作者之家 2020-11-17

连续浇铸法,简称连铸,使钢水不断地通过水冷结晶器,凝成硬壳后从结晶器下方出口连续拉出,经喷水冷却,全部凝固后切成坯料的铸造工艺。

简介近几年来连续浇铸受到极大的注意,并已经广泛用于浇铸轻合金板坯和锭坯;目前该法正用于铜和钢的加工。连续浇铸的目的是越过传统的铸锭方式,而铸成可在精轧机上直接轧制的形式。此外,采用连续浇铸在提高产品的产量、改善表面状况以及内部质量等方面具有良好的指标。

连续浇铸的操作顺序如下:

1.将液态金属送往浇铸机。

2.金属通过分配器流入结晶器。

3.在水冷结晶器中凝成铸坯。

4.从结晶器拉出铸坯。

5.进一步除去铸坯的热量,例如在结晶器下喷水。

6.铸坯的切割及运送。

要完成上述任务目前在工业上有几种装置可资利用。连铸机的主要类型有:立式、立弯式与弧形结晶器等。

早期的连续铸钢机多数为立式。立弯式与弧形结晶器铸钢机虽然其结构较复杂,可是由于可使机械高度降至最低,并且可在现有的车间内安装而无需改变吊车高度,因而得到发展。

影响浇铸速率的主要因素是散热速率。浇铸速率的极限是使切断铸坯前铸件完全凝固所需排出的热量恰好散除时的速率。浇铸速率的另一个更重要的限制是在水冷结晶器内必须形成坚固坯壳,当铸坯离开结晶器推进时,坯壳能支持坯中的液态金属。关键因素是从结晶器引出时坯壳的厚度,它主要取决于在结晶器中排出热量的速率。据此,连续浇铸的关键部分是水冷结晶器中热的排除。1

连铸机型式连铸机是从直立式装置开始的。为了降低装置的高度,扩大铸坯品种和提高质量等目的,连铸机发展出了多种结构形式。
立式连铸机全部设备直至切割器,都是垂直布置,切割后钢坯放平运走。立弯式连铸机结晶器是直立的,在铸坯离开结晶器后尚未全凝固前,以机械力顶弯铸坯,水平切割后运出。
弧形连铸机通过结晶器使铸坯表层凝固成形,随即沿弧形曲线的二冷段向前移动,铸坯凝固至一定程度后,再矫直成水平状,切割后运出。这类连铸机的二冷段有全弧形、椭圆形(多点椭圆轨迹)或带二冷上部直线段。矫直段有铸坯全凝固矫直方式或带液相坯矫直方式。为了满足高质量产品的要求,在结晶器或二冷上段外围装设低频电磁搅拌装置,以改善铸坯结晶组织。

倾斜式连铸机 从结晶器直至切割器都呈倾斜布置,最后水平输出。
水平式连铸机 钢水由中间罐水口直接水平导入水冷结晶器,出结晶器后的铸坯以时拉时停的间断操作方式拉坯前进,以保证铸坯表面质量不产生破裂。

旋转轮式高速连铸机 结晶器和二冷段均以槽形轮带式结构组成。因结晶器和铸坯之间无相对滑移现象,适于高速浇铸,可使连铸机注速与后部连接的轧机的速度同步配合,达到连铸连轧的目的。离心旋转连铸机 结晶器作水平旋转运动,用于浇铸圆钢坯。
目前普遍使用的连铸设备是弧形连铸机。立式、立弯式、倾斜式三种型式是发展过程的产物,其中直立式仍在少数工厂使用,水平式、旋转轮式、离心旋转连铸机尚处于试验或小规模生产阶段。2

组成以通用的弧形连铸机为例。
盛钢桶和中间罐盛钢桶多用旋转台承托,便于调换盛钢桶连续供钢水。钢水浇进结晶器之前先通过中间罐,调整钢水静压力,保持钢水流动平稳。中间罐可快速调换使用,以保证钢流浇铸不间断并实现多炉连浇。在中间罐水口下设有事故溢流槽,使废钢流入垃圾罐。
结晶器 以纯铜或铜合金材料作内壁,用钢框架密封箍住。内壁和外框间留有冷却水通路。结晶器内衬铜壁一般厚6~24毫米,长600~1100毫米,在结晶器旁侧装设杠杆机构的机械联锁振动机构,使结晶器沿弧形曲线上下振动。结晶器内壁的润滑有两种方法:对厚度150毫米以上铸坯一般采用伸入式水口加保护渣粉浇铸工艺,对小于150毫米铸坯采用油润滑。
二次冷却装置结晶器出口至拉坯矫直机之间,沿弧形曲线以多组导辊作铸坯前进的轨道,导辊中间穿插多组冷却水喷嘴进行二次冷却,加速钢流凝固。
拉坯矫直机 在二冷区后段设有多支点拖辊,曳拉和矫直铸坯前进。
切割装置 用氧气乙炔火焰或机械剪切割铸坯,这项装置和拉坯矫直机前进方向的速度应相互配合。
引锭杆是许多金属环节连接构成的可挠长杆。可与铸坯一样由拉坯矫直机夹持,沿导辊曲线移动。朝结晶器方向一端的引锭杆为凹形锁头,承接钢水,牵拉铸坯。
连续铸钢工艺连铸机必须与出钢操作密切配合,钢水开始浇入结晶器的同时,一面启动结晶器振动,进行润滑和开放冷却水,一面启动拉坯矫直机拖引锭杆运转,铸坯随引锭杆拉曳前进,铸坯过拉坯矫直机到一定位置后,脱卸并移开引锭杆,铸坯本身由拉坯矫直机继续拉曳。前进的铸坯按定尺长度逐次切割,输送、堆存,待全炉钢水铸完为止。在生产中应力争多炉连铸,以提高经济效益。

钢水成分和温度控制 对钢水成分和温度要有严格的要求。一般用伸入式水口或吹氩密封保护钢流,或两者兼用,以防止钢水二次氧化。钢水含铝高时容易产生粘膜堵塞水口,用定径水口浇铸小方坯,一般控制钢水的含铝量小于0.06%。对铝镇静钢或对含铝量有一定要求的钢种,常从结晶器上口以铝条或铝粒加入钢水,而不经过中间罐水口。钢水浇铸温度一般高于钢的凝固点20~50℃。现在普遍采用浇铸前在钢包内吹氩气搅拌钢水,以使钢水的成分及温度均匀,温度波动可控制到±5℃。
拉速控制 在保证铸坯质量和安全生产的前提下,拉速主要受铸坯凝固速度的制约。拉速过快易发生漏钢、断接等;拉速慢则易发生铸坯表面不光整、结疤等。高碳钢和合金钢的拉速应比低碳钢慢。铸坯断面(厚度)大的拉速应比断面小的慢。提高拉速须尽量保持低温浇铸,并对钢液面采用红外线或电磁检测仪表等控制手段。拉速范围与铸坯断面品种有关,以普通碳钢为例:板坯0.5~1.8米/分,大方坯0.6~1.5米/分,小方坯1.5~3.5米/分。
冷却控制 连续铸钢的冷却区集中在结晶器、二冷段和后部工序冷却等三个部分。一般认为结晶器段占冷却量的14~20%,二冷段占23~30%。冷却强度过大和拉速不适应时,会造成铸坯内裂和外裂纹。冷却强度过小和不均匀则易产生铸坯鼓肚、漏钢等现象。冷却强度必须随钢种、铸坯温度和拉速快慢进行控制调节。每公斤钢的冷却水消耗量约1~2公斤。要求各断面部位冷却均匀,冷却水要过滤净化,使水质洁净,导热均匀。
提高连铸机生产能力应降低钢水浇铸时的过热温度,提高拉速,扩大铸坯断面和采用多流连铸。铸坯断面的选定和轧机轧制成材道次的综合考虑也很重要。采用多炉连铸可提高连铸机作业率,但要力求浇铸时间与冶炼周期相互协调。
连铸坯的缺陷在浇铸生产过程中,由于钢水成分、温度、浇铸速度、冷却水强度等控制不当,以及铸机设备安装不合规格等原因,可造成与模铸相似的各种缺陷。与模铸钢锭的差别是裂纹缺陷比较多见。2

本词条内容贡献者为:

黎明 - 副教授 - 西南大学

科技工作者之家

科技工作者之家APP是专注科技人才,知识分享与人才交流的服务平台。